Problem 1. (33 points total)
(a) (28 points)

$$
\begin{aligned}
& v_{T}=\frac{60}{3.6}=16.67 \mathrm{~m} / \mathrm{s} \quad(14 \text { points for relative velocity }) \\
& v_{C}=\frac{80}{3.6}=22.22 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Attach a translating $x y$-frame to the car C with the x-axis along the normal direction of the truck T. The same unit vectors \mathbf{i}, \mathbf{j} can be used in both the translating and fixed frames. Thus

$$
\begin{array}{ll}
& \mathbf{v}_{T}=\mathbf{v}_{C}+\mathbf{v}_{T / C} \\
\Rightarrow \quad & 16.67 \mathbf{j}=22.22 \cos 30^{\circ} \mathbf{i}+22.22 \sin 30^{\circ} \mathbf{j}+\mathbf{v}_{T / C} \\
\Rightarrow \quad & \mathbf{v}_{T / C}=-19.24 \mathbf{i}+5.56 \mathbf{j} \mathbf{~ m} / \mathrm{s} \quad \text { (3 points for answer) }
\end{array}
$$

The solution may also be obtained graphically from the vector diagram of velocities. In comparison, the absolute velocity of truck T is

$$
\mathbf{v}_{T}=16.67 \mathbf{j}
$$

Similarly, (14 points for relative acceleration)

$$
\begin{aligned}
& a_{T}=\frac{v_{T}^{2}}{\rho}=\frac{16.67^{2}}{110}=2.53 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{C}=1.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The acceleration of T relative to C is given by

$$
\begin{array}{ll}
& \mathbf{a}_{T}=\mathbf{a}_{C}+\mathbf{a}_{T / C} \\
\Rightarrow & 2.53 \mathbf{i}=1.5 \cos 30^{\circ} \mathbf{i}+1.5 \sin 30^{\circ} \mathbf{j}+\mathbf{a}_{T / C} \\
\Rightarrow \quad & \mathbf{a}_{T / C}=1.23 \mathbf{i}-0.75 \mathbf{j} \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

(3 points for answer)

(b) (5 points) A coordinate system attached to the truck T (with the y-axis in the direction of the velocity of T for example) is a rotating system. If $\mathbf{v}_{\text {rel }}$ is the velocity of car C as observed from truck T, then $\mathbf{v}_{\text {rel }}$ depends on the rotation of coordinate system attached to the truck. It can be shown from rigid-body kinematics that

$$
\begin{array}{rlr}
& \mathbf{v}_{\text {rel }}=\mathbf{v}_{C}-\mathbf{v}_{T}-\boldsymbol{\omega} \times \mathbf{r}_{C / T} & \text { (this is not expected) } \\
\Rightarrow \quad & \mathbf{v}_{\text {rel }} \neq \mathbf{v}_{C}-\mathbf{v}_{T}=-\mathbf{v}_{T / C} & \text { (3 points for answer) }
\end{array}
$$

Problem 2. (33 points total)

Attach $x y$-frame to the center of the upper pulley. Locate A, B by coordinates x_{A} and y_{B}. Since $x_{A} \leq 0$,

$$
\begin{aligned}
-x_{A}+2 y_{B}=L & \Rightarrow \\
& \Rightarrow \quad v_{A}=2 v_{B} \quad(7 \text { points for constraint }) \\
& v_{A}(0)=2 v_{B}(0)=6 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

For block A,
(10 points for block A)

$$
\begin{align*}
\int \sum F_{x} d t=\Delta G_{x} & \Rightarrow \quad \int_{0}^{1}\left(T-\mu_{k} N\right) d t=m_{A} v_{A}(1)-m_{A} v_{A}(0) \\
& \Rightarrow \quad T-0.1(10)=\frac{10}{32.2}\left[v_{A}(1)-6\right] \tag{1}
\end{align*}
$$

For block B,
(10 points for block B)

$$
\begin{align*}
\int \sum F_{y} d t=\Delta G_{y} & \Rightarrow \quad \int_{0}^{1}\left(-2 T+m_{B} g\right) d t=m_{B} v_{B}(1)-m_{B} v_{B}(0) \\
& \Rightarrow \quad-2 T+3=\frac{3}{32.2}\left[\frac{v_{A}(1)}{2}-3\right] \tag{2}
\end{align*}
$$

There are 2 unknowns $v_{A}(1), T$ in 2 equations. Simultaneous solution gives

$v_{A}(1)=7.50 \mathrm{ft} / \mathrm{sec}$
$T=1.47 \mathrm{lb}$

$T$$\quad$| (3 points for answer) |
| :--- |
| (3 points for answer) |

Problem 3. (34 points total)
The solution is divided into three parts so that the impact between A and B can be treated separately.
Part 1. (10 points) Let v_{A} be the velocity with which the block A hits the pan B.

$$
\begin{aligned}
\Delta T+\Delta V_{g}=0 & \Rightarrow \quad m_{A} g h=\frac{1}{2} m_{A} v_{A}^{2} \\
& \Rightarrow \quad v_{A}=6.26 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Part 2. (10 points) Let v be the common velocity of the block A and pan B after the plastic impact. Then

$$
\begin{aligned}
\Delta G=0 \quad & \Rightarrow \quad m_{A} v_{A}+m_{B} v_{B}=\left(m_{A}+m_{B}\right) v \\
& \Rightarrow \quad 30(6.26)=(30+10) v \\
& \Rightarrow \quad v=4.70 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Part 3. (14 points) Let δ be the maximum deflection of the pan measured from its initial level of static equilibrium. The initial compression of the spring is

$$
e=m_{B} g / k=4.91 \times 10^{-3} \mathrm{~m}
$$

For the system consisting of A and B,

$$
\begin{array}{ll}
& U_{1-2}=\Delta T=-T_{1} \\
\Rightarrow & \left(m_{A}+m_{B}\right) g \delta-\int_{e}^{e+\delta} k x d x=-\frac{1}{2}\left(m_{A}+m_{B}\right) v^{2} \\
\Rightarrow & 40(9.81) \delta-10000\left[(e+\delta)^{2}-e^{2}\right]+20 v^{2}=0 \\
\Rightarrow \quad & 10000 \delta^{2}-294.2 \delta-441.8=0 \\
\Rightarrow \quad & \delta=0.225 \text { or }-0.196
\end{array}
$$

Take the positive root to write

