$\operatorname{son} 1$
(a). By ideal gas law rpt's
we have $P \cdot V=N k_{B} T . \Rightarrow N=\frac{P V}{k_{B} T}=\frac{P\left(a^{2} k\right)}{k_{c i} T}$
(-1pt if you only ionsicir N_{2} al get f $\frac{p\left(a^{2}+1\right)}{}$)
(b) after mockaxing T log ΔT. we get wal dimensions of the house to be $\left\{\begin{array}{l}a^{\prime}=a(1+\alpha \Delta T) \\ \hbar^{\prime}=\hbar(1+\alpha \Delta T)\end{array} \Rightarrow V^{\prime}=a^{\prime 2} \cdot h^{\prime}=a^{2} \hbar(1+\infty \Delta T)^{3}\right.$

$$
=a^{2} \hbar\left(1+3 \times \Delta T+3(x \leq T)^{2}+(x \Delta T)\right.
$$

while the linear expansion formula is collect up to linear terms in ΔT. we should really, throw along all the higher order
terms

$$
\Rightarrow V^{\prime}=V(1+3 \times \Delta T) . \quad \text { ind } \quad \frac{\Delta V}{V}=3 \times \Delta T
$$ apt for the

explanation if
your wont get the
find maid
right! apt fir the
explanation if
your wont get the
find mend t
right! apt for the
explanation if
four mont get the
find manat
right! apt fir the
explanation if
four wont git the
find milt
right!
(c). One has to malize that itcaume the house \uparrow is not air tight. after a voile. it reaches equilievicun, ie. $\left\{\begin{array}{l}\text { Pinsiche }=\text { Pouts side }=P . \\ T_{\text {insicle }}=T_{\text {ont side }}=T^{\prime}=(T+\Delta T)\end{array}\right.$

$$
\Rightarrow P V^{\prime}=N^{\prime}{k_{13}} T^{\prime}
$$

rpt's

$$
\Rightarrow \rho^{\prime}=\frac{N^{\prime}}{V^{\prime}}=\frac{P}{k_{B B} T^{\prime}}=\frac{P}{k_{B}(T+\Delta T)} \quad \text { opt's. }
$$

when $\frac{\Delta T}{T}$ is small, one conn do the appueximation

$$
\rho^{\prime}=\frac{P}{K_{B B} T\left(1+\frac{\Delta T}{T}\right)} \sim \frac{P}{K_{B} T}\left(1-\frac{\Delta T}{T}\right) \quad \text { pt's. }
$$

While $5_{0}=\frac{N}{V}=\frac{P}{k_{1 B} T}$ opt $\Rightarrow \frac{\Delta \rho}{\rho_{0}}=-\frac{\Delta T}{T} \quad 2 p t$

Phys 7 B Midterm \#1, Problem 2 solution
(2)

a) ab: Step 1: add scoop of hot water to raise temp by $\left(.1^{\circ} \mathrm{C}\right)$

Step 2: add small weight necessary to keep V constant.

* repeat until $P=P_{2}$
b) $b c$: Step li add a scoop of cold water (since $T_{b}>T_{c}$) for $\left(-1^{\circ} \mathrm{C}\right.$)
step 2: remove weights such that ($\Delta P / \Delta V=$ desired slope) * repeat until $V=V_{2}$

c) ca: step 1: add a small weight to increase P by. Olatm *repeat until $P=P$,

On $\mathrm{P}-\mathrm{r}$ diagram Lour independent variables):

$$
V=\frac{T}{p}
$$

Problem 3

Grading notes:
No points for unused formulas
If you used Δ Sideal from your cheat sheet, there was a maximum of 4 points total. The point of the problem was to work out the entropy integral.

It was okay if you used any correct path over which to integrate S because S is a state variable.

```
Solve for : Entropy change from B }->\mathrm{ C
```


Maximum 5 pts. for setting up entropy integral and using the integral. No points for just the formula.

$$
\Delta S=\int \frac{1}{T} d Q
$$

Maximum 5 pts.: Second Law. You must state and use the law correctly for credit.
Maximum 5pts.: both entropy terms are algebraically correct
(If the 2nd law was not used in one place and path was split up into different phases (isochoric, isobaric, etc) then there was 5 pts. max for each term.)

$$
\text { Second law : } \begin{aligned}
Q & =\Delta E+W \\
d Q & =d E+d W \\
& =\frac{d}{2} N k d T+P d V
\end{aligned}
$$

$$
\Delta S=\int \frac{(d / 2) N k}{T} d T+\int \frac{P}{T} d V
$$

$$
=\frac{\mathrm{d}}{2} N k * \ln \left(\frac{\mathrm{Tc}}{\mathrm{~Tb}}\right)+N k * \ln \left(\frac{\mathrm{Vc}}{\mathrm{Vb}}\right)
$$

Max 3pts. : Plug in temperatures and volumes

$$
\begin{array}{r}
\mathrm{Tc}=\mathrm{Ta}=\frac{\mathrm{P} 1 * \mathrm{~V} 1}{\mathrm{Nk}} \text { and } \mathrm{Tb}=\frac{\mathrm{P} 2 * \mathrm{~V} 1}{\mathrm{Nk}} \\
\mathrm{Vc}=\mathrm{V} 2 \text { and } \mathrm{Vb}=\mathrm{V} 1
\end{array}
$$

Max 2pts: Carry out all algebra to finish, including signs of terms.

$$
\begin{array}{ll}
N k=n R=R & \text { (for } 1 \text { mol) } \\
d=3 & \text { (for monatomic) }
\end{array}
$$

Answer:

$$
\Delta \mathrm{Sbc}=\frac{3}{2} \mathrm{R} * \ln \left(\frac{\mathrm{P} 1}{\mathrm{P} 2}\right)+\mathrm{R} * \ln \left(\frac{\mathrm{~V} 2}{\mathrm{~V} 1}\right)
$$

(4) (a) Since the system is isolated

$$
\begin{gathered}
Q_{c_{1} \mathrm{p}}+Q_{H_{2} \mathrm{O}}=0 \\
m_{1} c_{1}\left(T_{f}-T_{1}\right)+m_{2} c_{2}\left(T_{f}-T_{2}\right)=0 \\
\left(m_{1} c_{1}+m_{2} c_{2}\right) T_{f}=m_{1} c_{1} T_{1}+m_{2} c_{2} T_{2} \\
T_{f}=\frac{m_{1} c_{1} T_{1}+m_{2} c_{2} T_{2}}{m_{1} c_{1}+m_{2} c_{2}}
\end{gathered}
$$

(b) Since the temperature is changing, we must wee

$$
\begin{aligned}
& \Delta S=\int_{\text {initial }}^{\text {final }} d S=\int \frac{d Q}{T}=\int \frac{m c d T}{T} \\
& \Delta S_{1}=\int_{T_{1}}^{T_{f}} \frac{m_{1} c_{1} d T}{T}=m_{1} c_{1} \ln \left(\frac{T_{f}}{T_{1}}\right) \\
& \Delta S_{2}=\int_{T_{2}}^{T_{f}} \frac{m_{2} c_{2} d T}{T}=m_{2} c_{2} \ln \left(\frac{T_{f}}{T_{2}}\right) \\
& \Delta S_{\text {total }}=\Delta S_{1}+\Delta S_{2}=m_{1} c_{1} \ln \left(\frac{T_{f}}{T_{1}}\right)+m_{2} C_{2} \ln \left(\frac{T_{f}}{T_{2}}\right) \\
& \left(\Delta S_{\text {exusconment }}=0 \text { because the system is isolated }\right)
\end{aligned}
$$

5. a. (5 pts) Write equations for each rod, noting that the temperature of each rod at the junction is the same.

$$
r_{1}=\frac{A k_{1}}{L_{1}}\left(T_{H}-T_{M}\right) \quad r_{2}=\frac{A k_{2}}{L_{2}}\left(T_{M}-T_{L}\right)
$$

At steady-state, the rates will be the same, $r_{1}=r_{2}$. Knowing this, we can solve for T_{M}.

$$
\begin{gathered}
\frac{A k_{1}}{L_{1}}\left(T_{H}-T_{M}\right)=\frac{A k_{2}}{L_{2}}\left(T_{M}-T_{L}\right) \\
\frac{k_{1}}{L_{1}} T_{H}+\frac{k_{2}}{L_{2}} T_{L}=\left(\frac{k_{1}}{L_{1}}+\frac{k_{2}}{L_{2}}\right) T_{M} \\
T_{M}=\frac{\frac{k_{1}}{L_{1}} T_{H}+\frac{k_{2}}{L_{2}} T_{L}}{\frac{k_{1}}{L_{1}}+\frac{k_{2}}{L_{2}}}
\end{gathered}
$$

b. (5 pts) For this part, we know $T_{M}=50^{\circ} \mathrm{C}$. I will also plug in $T_{H}=100^{\circ} \mathrm{C}$ and $T_{L}=0^{\circ} \mathrm{C}$.

$$
\begin{gathered}
50{ }^{\circ} \mathrm{C}=\frac{\frac{k_{1}}{L_{1}} 100{ }^{\circ} \mathrm{C}}{\frac{k_{1}}{L_{1}}+\frac{k_{2}}{L_{2}}} \\
\frac{1}{2}=\frac{1}{1+\frac{L_{1}}{L_{2}} \frac{k_{2}}{k_{1}}} \rightarrow \frac{L_{1}}{L_{2}} \frac{k_{2}}{k_{1}}=1 \rightarrow L_{2}=\frac{k_{2}}{k_{1}} L_{1}
\end{gathered}
$$

c. (5 pts) Calculate the rates, r_{1} and r_{2}. Plug in our knowledge of T_{M} from part a.

$$
\begin{gathered}
r_{1}=\frac{A k_{1}}{L_{1}}\left(T_{H}-T_{M}\right)=\frac{A k_{1}}{L_{1}}\left(T_{H} \frac{\frac{k_{1}}{L_{1}}+\frac{k_{2}}{L_{2}}}{\frac{k_{1}}{L_{1}}+\frac{k_{2}}{L_{2}}}-\frac{\frac{k_{1}}{L_{1}} T_{H}+\frac{k_{2}}{L_{2}} T_{L}}{\frac{k_{1}}{L_{1}}+\frac{k_{2}}{L_{2}}}\right)=\frac{A k_{1}}{L_{1}} \frac{T_{H} \frac{k_{2}}{L_{2}}-T_{L} \frac{k_{2}}{L_{2}}}{\frac{k_{1}}{L_{1}}+\frac{k_{2}}{L_{2}}}=A \frac{\frac{k_{1}}{L_{1}} \frac{k_{2}}{L_{2}}}{\frac{k_{1}}{L_{1}}+\frac{k_{2}}{L_{2}}}\left(T_{H}-T_{L}\right) \\
=A \frac{1}{\frac{L_{1}}{k_{1}}+\frac{L_{2}}{k_{2}}}\left(T_{H}-T_{L}\right)
\end{gathered}
$$

Of course, r_{2} is the same because we are at equilibrium.
d. (5 pts) If all linear dimensions double, then the length doubles, $L \rightarrow 2 L$, and the cross-sectional area quadruples, $A \rightarrow 2^{2} A$. Looking at the conduction formula makes it clear that the flow of heat doubles (for both r_{1} and r_{2}). It is helpful to note that the temperature at the midpoint does not change, see the answer to part a. above, letting $L_{1} \rightarrow 2 L_{1}$ and $L_{2} \rightarrow 2 L_{2}$.

$$
H=\frac{A k}{L}\left(T_{2}-T_{1}\right) \rightarrow \frac{4 A k}{2 L}\left(T_{2}-T_{1}\right)=2 \frac{A k}{L}\left(T_{2}-T_{1}\right)=2 H
$$

