UNIVERSITY OF CALIFORNIA, BERKELEY
MECHANICAL ENGINEERING
ME106 Fluid Mechanics
1st Test, $\mathbf{S 1 2}$ Prof S. Morris

Problem 1
Mean: 44.96
SOLUTIONS
SD: 20.81

1. (65) Far from the spinning cylinder, the air of density ρ has uniform velocity $V_{o} \mathbf{i}$ and pressure p_{o}. On the cylinder, the pressure is given as a function of angle ϕ by $p(\phi)-p_{o}=-4 \rho V_{0}^{2}(J+\sin \phi)^{2}$; J is a given constant. The aim is to find the component of the resultant pressure force acting parallel to the free stream $V_{O} \mathbf{i}$.

$$
\begin{array}{ll}
p_{0} & \rho
\end{array}
$$

(a) Derive the expression giving F_{x} as an integral of $p(\phi)$ with respect to ϕ.
(b) Evaluate your integral to determine F_{x}.
(c) On a single sketch, show $J+\sin \phi$ and $(J+\sin \phi)^{2}$ as functions of ϕ; then interpret your answer to part (b) using that sketch. For full credit, all curves and axes on your sketch must be clearly labelled.

$$
\text { Given: } n(\cos \phi)\left(\sin ^{n-1} \phi\right)=\frac{\mathrm{d}}{\mathrm{~d} \phi}\left(\sin ^{n} \phi\right)
$$

(a) The right hand figure shows the elementary area $a \mathrm{~d} \phi$; it is chosen so that the stress vector $-p \mathbf{n}$ is constant on it.
Resolving the stress vector into its Cartesian components, we see that the x-component of force (per unit length) exerted by the stream on the elementary area is given by

$$
-p n_{x} a \mathrm{~d} \phi=-a p \cos \phi \mathrm{~d} \phi
$$

The resultant forces parallel to the free stream is given by

$$
F_{x}=-a \int_{0}^{2 \pi} p \cos \phi \mathrm{~d} \phi
$$

(b) Without approximation,

$$
F_{x}=-a \int_{0}^{2 \pi}\left(p-p_{0}\right) \cos \phi \mathrm{d} \phi-a \int_{0}^{2 \pi} p_{0} \cos \phi \mathrm{~d} \phi
$$

Setting $n=1$ in the datum, we see that the second integral vanishes; a uniform pressure p_{0} acting over the entire surface of body exerts no resultant force.
Substituting for $p-p_{0}$ in the remaining integral, we obtain

$$
\begin{aligned}
F_{x} & =4 \rho V_{0}^{2} a \int_{0}^{2 \pi}(J+\sin \phi)^{2} \cos \phi \mathrm{~d} \phi \\
& =4 \rho V_{0}^{2} a \int_{0}^{2 \pi} \frac{\mathrm{~d}}{\mathrm{~d} \phi} \frac{1}{3}(J+\sin \phi)^{3} \mathrm{~d} \phi \\
& =\frac{4}{3} \rho V_{0}^{2} a\left[(J+\sin \phi)^{3}\right]_{0}^{2 \pi},=0
\end{aligned}
$$

(The second line follows from the chain rule, and the datum with $n=3$.)
Conclusion: $F_{x}=0$. For this pressure distribution, there is no drag; the component of force parallel to the free stream vanishes identically.
(c) Note: to explain why $F_{x}=0$ for the given pressure distribution, only a careful freehand sketch is needed. However, to facilitate making the figure electronically, I have graphed the functions quantitatively for $J=\frac{1}{2}$; the horizontal broken line shows this value of J.
As the broken curve and solid curve respectively, the figure shows $J+\sin \phi$ and $(J+\sin \phi)^{2}$ as functions of ϕ. To be useful, the sketch must indicate that $p-p_{0}$ is an even function of both $\phi-\frac{\pi}{2}$, and of $\phi-\frac{3}{2} \pi$.

In the figure, the upper half cylinder corresponds to $0<\phi<\pi$. Because $p-p_{0}$ is an even function of $\phi-\frac{\pi}{2}$, we see that the pressure forces contributed by the front $\left(0<\phi<\frac{\pi}{2}\right)$ and back $\left(<\frac{\pi}{2}<\phi<\pi\right)$ cancel exactly. The upper half cylinder experiences no drag.
The same is true of the lower half cylinder; it corresponds to $\pi<\phi<2 \pi$. Because $p-p_{0}$ is an even function of $\phi-\frac{3}{2} \pi$, we again see that the pressure forces contributed by the front $\left(\frac{3}{2} \pi<\phi<2 \pi\right)$ and back ($\pi<\phi<\frac{3}{2} \pi$) cancel exactly. The lower half cylinder experiences no drag. Owing to this symmetry of the pressure distribution, $F_{x}=0$.

Grade Keys,

Problem 1

(a) (30) Answer should be correct but, if you show a vector triangle with the idea of nx but have incorrect trigonometry giving $n x \neq \cos \varphi$ then $(10 / 30)$, otherwise no partial credit.
(b) (20) If the Integration is done correctly, but no conclusion is reached $(\mathrm{Fx}=0)$, give (10/20), otherwise no partial credit.
(c) (15) Sketch shows symmetry for 0 to $1 / 2 \pi \& 1 / 2 \pi$ to π and π to $3 / 2 \pi \& 3 / 2 \pi$ to 2π at both plots with explain of conclusion (b), otherwise no partial credit.

CROSS OUT ALL BLANK SPACES

FULL CREDIT FOR CORRECT FINAL RESULT WITH COHERENT ARGUMENT

Problem 2

Mean: 44.26
SD: 18.31
2. (65) (a) Write the formula for the material derivative $\frac{\mathrm{d} f}{\mathrm{~d} t}$ of an arbitrary function $f(x, y, z, t)$.
(b) Using the formula from part (a), evaluate $\frac{\mathrm{d} x}{\mathrm{~d} t}$; to receive credit, you must explain briefly the values you give to each term in the expression for $\frac{\mathrm{d} x}{\mathrm{~d} t}$.
(c) For the flow given by $\mathbf{V}=(K x+L y) \mathbf{i}+(L x-K y) \mathbf{j}$, find the fluid acceleration \mathbf{a}. (Hint: a $\| \mathbf{r}$.)
(a)

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial f}{\partial t}+u \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}+w \frac{\partial f}{\partial z},=\frac{\partial f}{\partial t}+(\mathbf{V} \cdot \nabla) f \tag{1a,b}
\end{equation*}
$$

(Either form is acceptable.)
(b)

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\partial x}{\partial t}+u \frac{\partial x}{\partial x}+v \frac{\partial x}{\partial y}+w \frac{\partial x}{\partial z},=0+u .1+v .0+w .0,=u \tag{2a,b,c}
\end{equation*}
$$

Explanation: in each partial derivative, all independent variables but one are fixed; consequently

$$
\frac{\partial x}{\partial t}=\left(\frac{\partial x}{\partial t}\right)_{(x, y, z) \text { fixed }}=0
$$

similarly $\frac{\partial x}{\partial y}=0=\frac{\partial x}{\partial z}$, but

$$
\frac{\partial x}{\partial x}=\left(\frac{\partial x}{\partial x}\right)_{(y, z, t) \text { fixed }}=1
$$

(c) Method 1: form the total derivative directly.

With $u=K x+L y$ and $v=L x-K y$,

$$
\mathbf{a}=\frac{\mathrm{d} \mathbf{V}}{\mathrm{~d} t}=\left(K \frac{\mathrm{~d} x}{\mathrm{~d} t}+L \frac{\mathrm{~d} y}{\mathrm{~d} t}\right) \mathbf{i}+\left(L \frac{\mathrm{~d} x}{\mathrm{~d} t}-K \frac{\mathrm{~d} y}{\mathrm{~d} t}\right) \mathbf{j}
$$

because for Cartesian coordinates, the unit vectors $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ have constant direction: $0=\frac{\mathrm{d} \mathbf{i}}{\mathrm{d} t}=\frac{\mathrm{d} \mathbf{j}}{\mathrm{d} t}=\frac{\mathrm{d} \mathbf{k}}{\mathrm{d} t}$. Because $\frac{\mathrm{d} x}{\mathrm{~d} t}=u$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=v$,

$$
\begin{align*}
\mathbf{a} & =(K u+L v) \mathbf{i}+(L u-K v) \mathbf{j} \\
& =\{K(K x+L y)+L(L x-K y)\} \mathbf{i}+\{L(K x+L y)-K(L x-K y)\} \mathbf{j} \tag{3a,b,c}\\
& =\left(K^{2}+L^{2}\right)(x \mathbf{i}+y \mathbf{j})
\end{align*}
$$

(3b) follows from (3a) by substituting for u and v; (3c) follows by simplifying (3b).
Method 2: use the general form for \mathbf{a}.
Because the flow is steady $\partial \mathbf{V} / \partial t=0$, so

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{V}}{\mathrm{~d} t}=(\mathbf{V} \cdot \nabla) \mathbf{V},=u \frac{\partial \mathbf{V}}{\partial x}+v \frac{\partial \mathbf{V}}{\partial y}+w \frac{\partial f}{\partial z} \tag{4}
\end{equation*}
$$

Because $\mathbf{V}=(K x+L y) \mathbf{i}+(L x-K y) \mathbf{j}$,

$$
\begin{equation*}
\frac{\partial \mathbf{V}}{\partial x}=K \mathbf{i}+L \mathbf{j}, \quad \frac{\partial \mathbf{V}}{\partial y}=L \mathbf{i}-K y \mathbf{j} \tag{5a,b}
\end{equation*}
$$

Substituting (5) into (4), the substituting for u and v, then simplifying, we again obtain (3c).
By either method,

$$
\begin{equation*}
\mathbf{a}=\left(K^{2}+L^{2}\right) \mathbf{r} \tag{6}
\end{equation*}
$$

where the position vector $\mathbf{r}=x \mathbf{i}+y \mathbf{j}$.

Problem 3

Mean: 64.82
SD: 11.71
3. (70) At point 1 on the surface of the airfoil, the pressure p is given by $\left(p-p_{\infty}\right) /\left(\frac{1}{2} \rho V_{\infty}^{2}\right)=-3$. Find the ratio of the flow speed at that point to V_{∞}. To receive credit, you must explain your logic; a formula and a number is not enough.

Applying the Bernoulli equation along the stagnation streamline (broken line) from infinity to point 1, we have:

$$
p_{\infty}+\frac{1}{2} \rho V_{\infty}^{2}=p_{1}+\frac{1}{2} \rho V_{1}^{2} .
$$

(We are taking taking changes in potential energy to be negligibly small; this is good approximation if $V_{\infty}^{2} \gg g \Delta z$.)
Solving for $\frac{V_{1}^{2}}{V_{\infty}^{2}}$, we obtain

$$
\frac{V_{1}^{2}}{V_{\infty}^{2}}=1+\frac{p_{\infty}-p_{1}}{\frac{1}{2} \rho V_{\infty}^{2}} .
$$

For the data given, $V_{1} / V_{\infty}=2$. The speed at point 1 is twice that of the free stream.
The streamline must be identified.

Grade Keys,

Problem 2

(a) $(10) \mathrm{df} / \mathrm{dt}=\partial \mathrm{f} / \partial \mathrm{t}+(\mathrm{dx} / \mathrm{dt})(\partial \mathrm{f} / \partial \mathrm{x})+(\mathrm{dy} / \mathrm{dt})(\partial \mathrm{f} / \partial \mathrm{y})+(\mathrm{dz} / \mathrm{dt})(\partial \mathrm{f} / \partial \mathrm{z})$ is also acceptable.
(b) (20) For credit, Final result must be present and all 4 terms must be correctly accounted for.
(c) (35) Final result (20) pts, Set up correctly (15) pts

Problem 3

(a) (15) Bernoulli Equation is correct.
(b) (20) Stagnation (10) pts streamline (10) pts must be drawn correctly. If vague "along unspecified streamline", then (10/20). If word "streamline" present anywhere in solution then (5/10).
(c) (35) Result; idea (10) pts, execution (20) pts, result (5) pts.

CROSS OUT ALL BLANK SPACES

FULL CREDIT FOR CORRECT FINAL RESULT WITH COHERENT ARGUMENT

