Friday, February 24, 2012, 12 -1 PM.
Please write your name at the top of each page as indicated and write all answers in the space provided. If you need additional space, write on the back sides. Do not remove or add any pages. Assume all problems are two-dimensional unless noted otherwise. For all answers, where appropriate, provide units. Good luck!

PROBLEM 1: $\mathbf{3 0}$ pts total
For this three-dimensional problem, two rods are welded together to form a T-shaped lever that is acted upon by a 650-N force as shown. Note that pt C is located in the $x-y$ plane, and point A is on the y-axis

i) 10 pts Express the force as a 3D vector and determine its x, y, and z components.
ii) 10 pts Determine the magnitude of the moment of the force about pt A.

$$
\begin{aligned}
& \bar{\gamma}_{A C}=300 \hat{\imath}+25 \hat{\jmath} \\
& M_{A} \quad r_{A C} \times \hat{\imath}=(300 \hat{\imath}+25 \hat{\jmath}) \times(-600 \hat{\jmath}+25 \hat{\jmath}) \mathrm{Nmm} \\
&=90,060 \hat{k} \mathrm{Nmm}
\end{aligned}
$$

$$
\bar{M}_{A}=90 \mathrm{Nm} \hat{K} \quad \text { Magnitude }=90 \mathrm{Mm}
$$

$$
\begin{aligned}
& \bar{\gamma}_{C D}=-300 \hat{\imath}+125 \hat{\jmath} ; \bar{\alpha}_{C D}=2 \text { unit vector } \frac{-3 C D \hat{i}+125 \hat{\jmath}}{\sqrt{30 \tau^{2}+125^{2}}} \\
& \bar{x}_{1 n}=\frac{-300 \hat{i}+125 \hat{\jmath}}{325} \\
& \underline{F}=650\left(x_{10}\right)-650\left(\frac{-300 \hat{i}+125 \hat{\jmath}}{325}\right) \\
& F=-600 \hat{\imath}+250 \hat{\jmath} \mathrm{~N} \\
& F_{x}=600 \mathrm{~N} ; F_{y}=250 \mathrm{~N} ; \mathrm{F}_{z}-0 \mathrm{H}
\end{aligned}
$$

iii) $\mathbf{5}$ pts What is the component of this moment along the $\operatorname{rod} A B$?

$$
\begin{aligned}
& M_{A B}=\bar{M}_{A} \cdot \bar{\chi}_{A B} \bar{z} \\
& \bar{\gamma}_{A B}= 300 \hat{\imath} \cdots 100 \hat{\jmath}+150 \hat{k} ; \bar{\chi}_{A B} \\
&= \frac{300 \hat{\imath}-100 \hat{\jmath}+150 \hat{k}}{\sqrt{300^{2}+100^{2}+1502}} \\
& \bar{\chi}_{A O}=\frac{300 \hat{\imath}-100 \hat{\jmath}+150 \hat{k}}{35 c} \\
& M_{A B}= \frac{90000 \times 150}{350} \mathrm{Nmm}
\end{aligned}
$$

iv) $\mathbf{5}$ pts Provide a physical interpretation for that component.
$M_{A B}$ is that moment which is acting to twist the while structure around the axis along rod $A B$
\qquad
PROBLEM 2: 25 pts total
Plyon $A B$ is attached to the ground at B via a hinge joint, and has three cables attached at top A. Two of the cables exert tensile forces as shown; a third cable AC is also attached, as shown, with unknown tension. Ignoring the mass of the pylon and cables, determine the tension force in cable $A C$ if the two-force member $A B$ is to remain vertically oriented as shown.

$$
\begin{gathered}
\text { Taking moment about } A \quad \sum M_{A}=B_{x}(32)=0 \\
B_{x}=0
\end{gathered}
$$

$$
\begin{aligned}
I_{x}=0 & \Rightarrow B_{x}+F_{2} \cos 12+F_{3} \cos \theta=F_{1} \cos 30 \\
\tan \theta & =32 / 24=4 / 3 \quad \Rightarrow \cos \theta=3 / 5
\end{aligned}
$$

$$
\begin{gathered}
\because F_{2} \cos 12+\frac{3 F_{3}}{5}=F_{1} \cos 30 \\
-5 / 3(20 \cos 12-45 \cos 30)=F_{3} \\
F_{3}=32.34 \mathrm{kH}
\end{gathered}
$$

ME C85/CE C30 Mid-Term Exam \#1, Fall 2012 Name:
PROBLEM 3: $\mathbf{2 0}$ pts total
A beam that is 12 ft long is loaded in various ways as shown. Which single loading configuration B-F is statically equivalent to the loading configuration A? Don't just guess: for full credit you need to show your work!
 Ib. it
Evaluating $\begin{gathered}\text { statically } \\ \text { equivalent }\end{gathered}$ Force-couple systems about the leftmost point of the beam for all lie loading configurations $B-F$

$$
\begin{aligned}
& F=200 \mathrm{lh} \\
& M=600 \mathrm{lh}-\mathrm{ft}
\end{aligned}
$$

$600 \mathrm{lb} \mathrm{f}+$

4200 lb .t.
$\begin{array}{ll}F-200 \mathrm{lb} 200 \times 12+18 \mathrm{co} \\ M= & =420 \mathrm{lh}-\mathrm{ft}\end{array}$
$F=-2.0 \quad i b$
$M=-600 \quad l b-f+$
$600 \mathrm{lb}-\mathrm{fz}$
$F=-20010$
$M=200 \times 12-600=1800 \mathrm{~kb}-1$

$$
F=+200 \mathrm{ln}
$$

$$
\text { Page } 4 \text { of } 5 M=-200 \times 12+1800=-600
$$

E is equivalent to A
\qquad
PROBLEM 4: 25 pts total
I) 15 points What is the horizontal location X^{*} of the single resultant force of the distributed loading? Assume $X=0$ at the left end of the beam.

$$
\begin{gathered}
a+b=1.5 \\
400 / a=400 / b \\
b=\frac{4 a}{9} \\
\Rightarrow 4 a / 9+a=1.5 \\
A+\frac{x_{2}}{A}+B
\end{gathered}
$$

$$
D \quad a=\frac{9}{13}(1.5)=1.038
$$

$$
b=(4 / 13)(1.5)=0.462
$$

Considering A ar Origin.

$$
\begin{aligned}
& x_{1}=1.9-a / 3 \\
& x_{2}=0.4+b / 3 \\
& x_{1}=\frac{1}{2}(900)(a)=467.1 ; A_{2}=-\frac{1.038}{3}(400)(b)=92.4 ; \frac{0.462}{3}=0.554 \\
& A_{2}=\frac{A_{1} x_{1}+A_{2} x_{2}}{A_{1}+A_{2}}=1.8 \\
& \text { ii) } 10 \text { points lanorina }
\end{aligned}
$$

ii) 10 points Ignoring the mass of the beam, what are the horizontal (X, positive to the right) and vertical (Y, positive upwards) components of the reaction forces at A and B ?

