IEOR 160 Midterm Question Solutions

Question 1 Solution

a) Let x denote the number of computers Eric will buy. The nonlinear programming formulation is

$$
\begin{aligned}
\max & -2 x^{2}+300 x \\
\text { s.t. } & 50 \leq x \leq 100
\end{aligned}
$$

b) The KKT condition of the problem is

$$
\begin{gathered}
50 \leq x \leq 100 \\
-4 x+300-\lambda_{1}+\lambda_{2}=0 \\
\lambda_{1}(100-x)=0, \quad \lambda_{1} \geq 0 \\
\lambda_{2}(x-50)=0, \quad \lambda_{2} \geq 0
\end{gathered}
$$

c) The solution for the KKT condition in b) is $x=75, \lambda_{1}=0, \lambda_{2}=0$.
d) Since the Hessian of the objective function in a) is $[-4]$ which is negative definite, the objective function is concave, and since the constraints are linear and the problem is a maximization problem, the KKT conditions give optimal solution to the problem.

Question 2 Solution

a) The problem can be formulated as

$$
\begin{array}{cc}
\max & -y^{2}+a x y+b y+c \\
\text { s.t. } & x+y=10
\end{array}
$$

b) The Hessian of the objective function in a) is $\left(\begin{array}{cc}0 & a \\ a & -2\end{array}\right)$. For the objective function to be concave, its Hessian must negative semidifinite. Therefore, if $a=0, b$ and c free, the objective function will be concave.
c) The Lagrangian function is

$$
L(x, \lambda)=-y^{2}+a x y+b y+c+\lambda(100-x-y)
$$

d) Take the derivative of the Lagrangian rpt x, y and λ, we get

$$
\begin{gathered}
a y-\lambda=0 \\
-2 y+a x+b-\lambda=0 \\
x+y=10
\end{gathered}
$$

Thus, $x=\frac{10 a-b+20}{2 a+2}, y=\frac{10 a+b}{2 a+2}$, and $\lambda=\frac{10 a^{2}+a b}{2 a+2}$.
e) When $a=0$, the point in d) is optimal. When $a=0, x=\frac{-b+20}{2}, y=\frac{b}{2}$ and $\lambda=0$.

Question 3 Solution

1) False. Consider the following NLP:

$$
\max -x^{4}
$$

It is easy to see that $x=0$ is the optimal solution for the NLP, yet the Hessian of it is [0], which is not negative definite.
2) False. For example, $f(x)=x$ is a concave function, yet it has no local minimum or local maximum.
3) True. Since $x_{1}^{2}+x_{2}^{2}$ is a convex function, $\left(0.5 x_{1}^{*}+0.5 y_{1}^{*}\right)^{2}+\left(0.5 y_{2}^{*}+0.5 y_{2}^{*}\right)^{2} \leq\left(0.5\left(x_{1}^{*}\right)^{2}+\right.$ $\left.0.5\left(x_{2}^{*}\right)^{2}\right)+\left(0.5\left(y_{1}^{*}\right)^{2}+0.5\left(y_{2}^{*}\right)^{2}\right) \leq 10$, and similarly the second constraint is satisfied as well at $0.5 x^{*}+0.5 y^{*}$. Thus, $0.5 x^{*}+0.5 y^{*}$ is feasible. Since $f\left(x_{1}, x_{2}\right)$ is a convex function, $f\left(0.5 x^{*}+\right.$ $\left.0.5 y^{*}\right) \leq 0.5 f\left(x^{*}\right)+0.5 f\left(y^{*}\right)=f\left(x^{*}\right)=f\left(y^{*}\right)$, therefore, $0.5 x^{*}+0.5 y^{*}$ is also a minimum point.

