Solutions to the First Midterm Exam - Multivariable Calculus

Math 53, February 25, 2011. Instructor: E. Frenkel

1. Consider the curve in \mathbb{R}^{2} defined by the equation

$$
r=\cos (2 \theta)
$$

(a) Sketch this curve.
(b) Find the area of the region enclosed by one loop of this curve.

$$
\frac{1}{2} \int_{-\pi / 4}^{\pi / 4} \cos ^{2}(2 \theta) d \theta=\frac{1}{4} \int_{-\pi / 4}^{\pi / 4}(1+\cos (4 \theta)) d \theta=\frac{\pi}{8}
$$

2. (a) Find an equation of the surface consisting of all points in \mathbb{R}^{3} that are equidistant from the point $(0,0,1)$ and the plane $z=2$.

The distance from a point $P=(x, y, z)$ to the point $(0,0,1)$ is $\sqrt{x^{2}+y^{2}+(z-1)^{2}}$, and the distance to the plane $z=2$ is $z-2$. Hence we obtain the equation

$$
\sqrt{x^{2}+y^{2}+(z-1)^{2}}=z-2
$$

which gives

$$
x^{2}+y^{2}+(z-1)^{2}=(z-2)^{2},
$$

and hence

$$
z=-\frac{x^{2}}{2}-\frac{y^{2}}{2}+\frac{3}{2}
$$

(b) Sketch this surface. What is it called?

This is an elliptic paraboloid which goes downward along the z axis.
3. Show that the function $\frac{x^{50} y^{50}}{x^{100}+y^{200}}$ does not have a limit at $(x, y)=(0,0)$.

First let's approach $(0,0)$ along the y-axis. Then $x=0$ and $y \neq 0$, so we have along this path $0 / y^{200}=0$ which has limit 0 .

Now let's approach $(0,0)$ along the line $x=y$. Then we obtain $x^{100} /\left(x^{100}+x^{200}\right)=$ $1 /\left(1+x^{100}\right)$ which has the limit 1 as $x \rightarrow 0$.

Since the function has two diferent limits along two different lines approaching $(0,0)$, the limit of this function at $(0,0)$ does not exist.
4. Consider the function $f(x, y)=x \cos (y)+y^{2} e^{x}+x$.
(a) Find the differential of this function.

$$
d f=\left(\cos (y)+y^{2} e^{x}+1\right) d x+\left(-x \sin (y)+2 y e^{x}\right) d y .
$$

(b) Find an equation of the tangent plane to the graph of this function at the point $\left(0, \pi, \pi^{2}\right)$.

Substituting $x=0, y=\pi, d x=x-0, d y=(y-\pi), d f=z-\pi^{2}$, we obtain the equation

$$
z-\pi^{2}=\pi^{2} x+2 \pi(y-\pi)
$$

5. Suppose we need to know an equation of the tangent plane to a surface S at the point $P=(1,3,2)$. We don't have an equation for S, but we know that the curves

$$
\begin{gathered}
\mathbf{r}_{1}(t)=\left\langle 1+5 t, 3-t^{2}, 2+t-t^{3}\right\rangle \\
\mathbf{r}_{2}(s)=\left\langle 3 s-2 s^{2}, s+s^{3}+s^{4}, s-s^{2}+2 s^{3}\right\rangle
\end{gathered}
$$

both lie in S. Find an equation of the tangent plane to S at the point P.

The point P corresponds to $t=0, s=1$.
We find tangent vectors to the two curves:

$$
\begin{gathered}
\mathbf{v}_{1}=\mathbf{r}_{1}^{\prime}(0)=\langle 5,0,1\rangle \\
\mathbf{v}_{2}=\mathbf{r}_{2}^{\prime}(1)=\langle-1,8,5\rangle .
\end{gathered}
$$

Their cross product is the noral vector to the plane containing both of them:

$$
\langle 5,0,1\rangle \times\langle-1,8,5\rangle=\langle-8,-26,40\rangle
$$

Hence the following is an equation of the tangent plane:

$$
-8(x-1)-26(y-3)+40(z-2)=0 .
$$

