ME 132, Spring 2005, Quiz \# 1

\# 1	$\# 2$	$\# 3$	TOTAL
10	20	15	45

Fact: Both roots of $\lambda^{2}+a_{1} \lambda+a_{2}=0$ have negative real-parts if and only if $a_{1}>0$ and $a_{2}>0$.

Fact: All three roots of $\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}=0$ have negative real-parts if and only if $a_{1}>0, a_{3}>0$, and $a_{1} a_{2}>a_{3}$.

1. Your answers in part 1a and 1 c both should have two free constants. I would like there to be no $\sqrt{-1}$ in the answers, just exponentials, \cos and \sin.
(a) What is the general form of real (as opposed to complex) solutions to the differential equation

$$
\ddot{y}(t)+2 \dot{y}(t)+17 y(t)=0
$$

(b) The solutions in part 1a are made up of an exponentially decaying envelope, superimposed on a sinusoid. What (approximately) is the ratio

$$
\frac{\text { Period - of - Oscillation }}{\text { Time - to - Decay }}
$$

Explain.
(c) What is the general form of real solutions to the differential equation

$$
\ddot{y}(t)+2 \dot{y}(t)+17 y(t)=-51
$$

2. A process has a very simple model,

$$
y(t)=H u(t)+w(t)
$$

The control input is u, the disturbance input is w and the output is y. Here, H is simply a gain, ie., the behavior of the system is "static" - it is not governed by a differential equation.
The goal of control is to make the process output y follow a reference input r, even in the presence of nonzero disturbances w, and slight unknown variations in H. In order to achieve this, we use an integral controller

$$
\begin{aligned}
\dot{z}(t) & =r(t)-y(t) \\
u(t) & =K_{I} z(t)
\end{aligned}
$$

Here, r is the reference input.
(a) Combine the the process model, and the controller equations to (eliminating z and u) get a relationship between the process output y, the two "forcing" functions r and w, and any of their derivatives.
(b) Under what conditions (on H and K_{I}) is the closed-loop system stable?
(c) Assume that K_{I} is chosen so that the closed-loop system is stable. Does a 20% change in H (ie., H changing to $0.8 H$ or $1.2 H$) affect stability of the closed-loop system?
(d) Assume that K_{I} is chosen so that the closed-loop system is stable. If $r(t) \equiv \bar{r}$ and $w(t) \equiv \bar{w}$ for all $t \geq 0(\bar{r}$ and \bar{w} are some fixed constant values), what are the steady-state values (in terms of $\left.\bar{r}, \bar{w}, K_{I}, H\right)$ of y and u, defined as

$$
\lim _{t \rightarrow \infty} y(t) \quad \lim _{t \rightarrow \infty} u(t)
$$

(e) How does a 20% change in H affect (approximately) the steady-state values of y and u derived in part (2d) above?
(f) Assume that K_{I} is chosen so that the closed-loop system is stable. What is the time-constant of the closed-loop system? Approximately how does a 20% change in H (ie., H changing to $0.8 H$ or $1.2 H$) affect (approximately) the time constant?
3. A closed-loop system is shown below. Here H and K are positive constants, namely $H=4$, and $K=1$.

(a) By eliminating y and u from the equations, find the constants A, B_{1}, B_{2} and B_{3} such that the internal variable z is related to the external forcing functions (r, w, n) in the form

$$
\dot{z}(t)=A z(t)+B_{1} r(t)+B_{2} w(t)+B_{3} n(t)
$$

(b) Express the variable y as a combination of z, r, w, n, namely find the constants C_{1}, D_{11}, D_{12} and D_{13} such that

$$
y(t)=C_{1} z(t)+D_{11} r(t)+D_{12} w(t)+D_{13} n(t)
$$

Missing Fig. in Problem 3 spring2005-quiz-1

(c) Express the variable u as a combination of z, r, w, n, namely find the constants C_{2}, D_{21}, D_{22} and D_{23} such that

$$
u(t)=C_{2} z(t)+D_{21} r(t)+D_{22} w(t)+D_{23} n(t)
$$

(d) Shown on the next page is the frequency-response matrix (2×3) from the three external inputs (r, w, n) to the two "outputs-of-interest" (y, u). In 5 of the cases, only the magnitude is shown. In the case of input/output pair (r, y), both magnitude and phase are shown.
In each axes, 3 or 4 lines are shown, though only one is correct. In each case, mark the correct frequency response curve.

