
CS 188 Introduction to
Fall 2011 Artificial Intelligence Midterm Exam
INSTRUCTIONS

• You have 3 hours.

• The exam is closed book, closed notes except a one-page crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences at most.

Last Name

First Name

SID

Login

All the work on this
exam is my own.
(please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 Q. 6 Q. 7 Q. 8 Total

/12 /12 /13 /7 /7 /11 /12 /6 /80



2

THIS PAGE INTENTIONALLY LEFT BLANK



NAME: 3

1. (12 points) Search

Consider the search graph shown below. S is the start state and G is the goal state. All edges are bidirectional.
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For each of the following search strategies, give the path that would be returned, or write none if no path will
be returned. If there are any ties, assume alphabetical tiebreaking (i.e., nodes for states earlier in the alphabet
are expanded first in the case of ties).

(a) (1 pt) Depth-first graph search

S-B-E-F-G

(b) (1 pt) Breadth-first graph search

S-C-G

(c) (1 pt) Uniform cost graph search

S-B-E-G

(d) (1 pt) Greedy graph search

S-B-E-G

(e) (2 pt) A* graph search

S-B-E-G
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For the following question parts, all edges in the graphs discussed have cost 1.

(f) (3 pt) Suppose that you are designing a heuristic h for the graph
on the right. You are told that h(F ) = 0.5, but given no other
information. What ranges of values are possible for h(D) if the
following conditions must hold? Your answer should be a range,
e.g. 2 ≤ h(D) < 10. You may assume that h is nonnegative.

i. h must be admissible
0 ≤ h(D) ≤ 3

ii. h must be admissible and consistent
0 ≤ h(D) ≤ 2.5
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D 
 

A 
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C 
 

E 
 

F 
 

G 
 

h=0.5 

(g) (3 pt) Now suppose that h(F) = 0.5, h(E) = 1.1, and all other heuris-
tic values except h(B) are fixed to zero (as shown on the right). For
each of the following parts, indicate the range of values for h(B) that
yield an admissible heuristic AND result in the given expansion order-
ing when using A* graph search. If the given ordering is impossible
with an admissible heuristic, write none. Break ties alphabetically.
Again, you may assume that h is nonnegative.

i. B expanded before E expanded before F
0.0 ≤ h(B) ≤ 1.1

ii. E expanded before B expanded before F
1.1 < h(B) ≤ 1.5
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2. (12 points) Formulation: Holiday Shopping

You are programming a holiday shopping robot that will drive from store to store in order to buy all the gifts
on your shopping list. You have a set of N gifts G = {g1, g2, . . . gN} that must be purchased. There are M
stores, S = {s1, s2, . . . sM} each of which stocks a known inventory of items: we write gk ∈ si if store si stocks
gift gk. Shops may cover more than one gift on your list and will never be out of the items they stock. Your
home is the store s1, which stocks no items.

The actions you will consider are travel-and-buy actions in which the robot travels from its current location si
to another store sj in the fastest possible way and buys whatever items remaining on the shopping list that
are sold at sj . The time to travel-and-buy from si to sj is t(si, sj). You may assume all travel-and-buy actions
represent shortest paths, so there is no faster way to get between si and sj via some other store. The robot
begins at your home with no gifts purchased. You want it to buy all the items in as short a time as possible
and return home.

For this planning problem, you use a state space where each state is a pair (s, u) where s is the current location
and u is the set of unpurchased gifts on your list (so g ∈ u indicates that gift g has not yet been purchased).

(a) (1 pt) How large is the state space in terms of the quantities defined above?

M · 2N

(b) (4 pt) For each of the following heuristics, which apply to states (s, u), circle whether it is admissible,
consistent, neither, or both. Assume that the minimum of an empty set is zero.

( [neither] / admissible / consistent / both)
The shortest time from the current location to any other store:

mins′ 6=s t(s, s
′)

(neither / admissible / consistent / [both])
The time to get home from the current location:

t(s, s1)

(neither / admissible / consistent / [both])
The shortest time to get to any store selling any unpurchased gift:

ming∈u(mins′:g∈s′ t(s, s
′))

(neither / [admissible] / consistent / both)
The shortest time to get home from any store selling any unpurchased gift:

ming∈u(mins′:g∈s′ t(s
′, s1))

( [neither] / admissible / consistent / both)
The total time to get each unpurchased gift individually:∑

g∈u(mins′:g∈s′ t(s, s
′))

( [neither] / admissible / consistent / both)
The number of unpurchased gifts times the shortest store-to-store time:
|u|(minsi,sj 6=si t(si, sj))
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You have waited until very late to do your shopping, so you decide to send an swarm of R robot minions to
shop in parallel. Each robot moves at the same speed, so the same store-to-store times apply. The problem
is now to have all robots start at home, end at home, and for each item to have been bought by at least one
robot (you don’t have to worry about whether duplicates get bought). Hint: consider that robots may not all
arrive at stores in sync.

(c) (4 pt) Give a minimal state space for this search problem (be formal and precise!)

u - Set of unpurchased gifts (shared among all robots)
(V1, V2, ..., VR) - Target store for each robot
(T1, T2, ..., TR) - Time remaining to reach target store for each robot
(or some equivalent representation of destination and partial progress for each robot)

One final task remains: you still must find your younger brother a stuffed Woozle, the hot new children’s toy.
Unfortunately, no store is guaranteed to stock one. Instead, each store si has an initial probability pi of still
having a Woozle available. Moreover, that probability drops exponentially as other buyers scoop them up, so
after t time has passed, si’s probability has dropped to βtpi. You cannot simply try a store repeatedly; once it
is out of stock, that store will stay out of stock. Worse, you only have a single robot that can handle this kind
of uncertainty! Phrase the problem as a single-agent MDP for planning a search policy for just this one gift
(no shopping lists). You receive a single reward of +1 upon successfully buying a Woozle, at which point the
MDP ends (don’t worry about getting home); all other rewards are zeros. You may assume a discount of 1.

(d) (3 pt) Give a minimal state space for this MDP (be formal and precise!)

T - Current time
L - Current location (store)
SV - Set of stores that have been visited
W - Woozle bought or not
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3. (13 points) CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and
freedom, rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortuantely, Pacman cannot
measure the the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent
corridors and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense
a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The
measurements for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

1

2
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4

5

s

W

wS

6

S

s

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

(a) (3 pt) State the binary and/or unary constraints for this CSP (either implicitly or explicitly).
Binary:
X1 = P or X2 = P , X2 = E or X3 = E,
X3 = E or X4 = E, X4 = P or X5 = P ,
X5 = P or X6 = P , X1 = P or X6 = P ,
∀i, j, Adj(i, j)and¬(Xi = EandXj = E)

Unary:
X2 6= P ,
X3 6= P ,
X4 6= P

(b) (4 pt) Cross out the values from the domains of the variables that will be deleted in enforcing arc
consistency.

X1 P

X2 G E

X3 G E

X4 G E

X5 P

X6 P G E
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(c) (1 pt) According to MRV, which variable or variables could the solver assign first?

X1 or X5 (tie breaking)

(d) (1 pt) Assume that Pacman knows that X6 = G. List all the solutions of this CSP or write none if no
solutions exist.

(P,E,G,E,P,G)
(P,G,E,G,P,G)

The CSP described above has a circular structure with 6 variables. Now consider a CSP forming a circular
structure that has n variables (n > 2), as shown below. Also assume that the domain of each variable has
cardinality d.

1

2

3

n

(e) (2 pt) Explain precisely how to solve this general class of circle-structured CSPs efficiently (i.e. in time
linear in the number of variables), using methods covered in class. Your answer should be at most two
sentences.

We fix Xj for some j and assign it a value from its domain (i.e. use cutset conditioning on one variable).
The rest of the CSP now forms a tree structure, which can be efficiently solved without backtracking by
enforcing arc consistency. We try all possible values for our selected variable Xj until we find a solution.

(f) (2 pt) If standard backtracking search were run on a circle-structured graph, enforcing arc consistency
at every step, what, if anything, can be said about the worst-case backtracking behavior (e.g. number of
times the search could backtrack)?

A tree structured CSP can be solved without any backtracking. Thus, the above circle-structured CSP
can be solved after backtracking at most d times, since we might have to try up to d values for Xj before
finding a solution.
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4. (7 points) Games: Multiple Choice

In the following problems please choose all the answers that apply. You may circle more than one answer. You
may also circle no answers, if none apply.

(a) (2 pt) In the context of adversarial search, α-β pruning

(i) can reduce computation time by pruning portions of the game tree

(ii) is generally faster than minimax, but loses the guarantee of optimality

(iii) always returns the same value as minimax for the root of the tree

(iv) always returns the same value as minimax for all nodes on the leftmost edge of the tree, assuming
successor game states are expanded from left to right

(v) always returns the same value as minimax for all nodes of the tree

(b) (2 pt) Consider an adversarial game in which each state s has minimax value v(s). Assume that the
maximizer plays according to the optimal minimax policy π, but the opponent (the minimizer) plays
according to an unknown, possibly suboptimal policy π′. Which of the following statements are true?

(i) The score for the maximizer from a state s under the maximizer’s control could be greater than v(s).

(ii) The score for the maximizer from a state s under the maximizer’s control could be less than v(s).

(iii) Even if the opponent’s strategy π′ were known, the maximizer should play according to π.

(iv) If π′ is optimal and known, the outcome from any s under the maximizer’s control will be v(s).

(c) (3 pt) Consider a very deep game tree where the root node is a maximizer, and the complete-depth
minimax value of the game is known to be v∞. Similarly, let π∞ be the minimax-optimal policy. Also
consider a depth-limited version of the game tree where an evaluation function replaces any tree regions
deeper than depth 10. Let the minimax value of the depth-limited game tree be v10 for the current root
node, and let π10 be the policy which results from acting according to a depth 10 minimax search at every
move. Which of the following statements are true?

(i) v∞ may be greater than or equal to v10.

(ii) v∞ may be less than or equal to v10.

(iii) Against a perfect opponent, the actual outcome from following π10 may be greater than v∞.

(iv) Against a perfect opponent, the actual outcome from following π10 may be less than v∞.
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5. (7 points) MDPs: Bonus level!

1 2 3 4 5
Pacman is in a bonus level! With no ghosts around, he can eat as many dots as he wants. He is in the 5 × 1
grid shown. The cells are numbered from left to right as 1, . . . , 5. In cells 1 through 4, the actions available
to him are to move Right (R) or to Fly (F) out of the bonus level. The action Right deterministically lands
Pacman in the cell to the right (and he eats the dot there), while the Fly action deterministically lands him
in a terminal state and ends the game. From cell 5, Fly is the only action. Eating a dot gives a reward of 10,
while flying out gives a reward of 20. Pacman starts in the leftmost cell (cell 1).

We write this as an MDP where the state is the cell that Pacman is in. The discount is γ.

Consider the following 3 policies:

π0(s) = F for all s

π1(s) = R if s ≤ 3, F otherwise

π2(s) = R if s ≤ 4, F otherwise

(a) (4 pt) Assume γ = 1.0. What is:

i. V π0(1)?
20

ii. V π1(1)?
50

iii. V π2(1)?
60

iv. V ∗(1)?
60

(b) (3 pt) Now consider an arbitrary value for γ.

i. Does there exist a value for γ such that π0 is strictly better than both π1 and π2? If yes, give a value
for γ. If no, write none.

Yes. 0 ≤ γ < 1
2

ii. Does there exist a value for γ such that π1 is strictly better than both π0 and π2? If yes, give a value
for γ. If no, write none.

None

iii. Does there exist a value for γ such that π2 is strictly better than both π0 and π1? If yes, give a value
for γ. If no, write none.

Yes. 1
2 < γ ≤ 1
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6. (11 points) MDPs and RL: Return to Blackjack

Armed with the power of Q-learning, you return to the CS188 casino! In this question, you will play a simplified
version of blackjack where the deck is infinite and the dealer always has a fixed count of 15. The deck contains
cards 2 through 10, J , Q, K, and A, each of which is equally likely to appear when a card is drawn. Each
number card is worth the number of points shown on it, the cards J , Q, and K are worth 10 points, and A is
worth 11. At each turn, you may either hit or stay. If you choose to hit, you receive no immediate reward and
are dealt an additional card. If you stay, you receive a reward of 0 if your current point total is exactly 15, +10
if it is higher than 15 but not higher than 21, and −10 otherwise (i.e. lower than 15 or larger than 21). After
taking the stay action, the game enters a terminal state end and ends. A total of 22 or higher is refered to as
a bust ; from a bust, you can only choose the action stay.

As your state space you take the set {0, 2, . . . , 21,bust, end} indicating point totals, “bust” if your point total
exceeds 21, and “end” for the end of the game.

(a) (3 pt) Suppose you have performed k iterations of value iteration. Compute Vk+1(12) given the partial
table below for Vk(s). Give your answer in terms of the discount γ as a variable. Note: do not worry
about whether the listed Vk values could actually result from this MDP!

s Vk(s)
13 2
14 10
15 10
16 10
17 10
18 10
19 10
20 10
21 10

bust −10
end 0

Vk+1(12) = 1
13 (8 · 10γ + 5 · (−10)γ) = 30

13γ

You suspect that the cards do not actually appear with equal probability and decide to use Q-learning instead
of value iteration.

(b) (4 pt) Given the partial table of initialQ-values below, fill in the partial
table of Q-values on the right after the following episode occurred.
Assume a learning rate of 0.5 and a discount factor of 1. The initial
portion of the episode has been omitted. Leave blank any values which
Q-learning does not update.

Initial values
s a Q(s, a)
19 hit −2
19 stay 5
20 hit −4
20 stay 7
21 hit −6
21 stay 8

bust stay −8

Episode
s a r s a r s a r
19 hit 0 21 hit 0 bust stay −10

Updated values

s a Q(s, a)

19 hit 3

19 stay

20 hit

20 stay

21 hit -7

21 stay

bust stay -9
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Unhappy with your experience with basic Q-learning, you decide to featurize your Q-values, representing them
in the form

∑
i wifi(s, a) for some feature functions fi(s, a).

First, consider the two feature functions

f1(s, a) =

 0, if a = stay;
+1, if a = hit and s ≥ 15;
−1, if a = hit and s < 15;

and f2(s, a) =

 0, if a = stay;
+1, if a = hit and s ≥ 18;
−1, if a = hit and s < 18.

(c) (3 pt) Circle all of the following partial policy tables for which it is possible to represent Q-values in the
form w1f1(s, a) + w2f2(s, a) that imply that policy unambiguously (i.e., without having to break ties).

(i) (ii) (iii) (iv) (v)
s π(s)
14 hit
15 hit
16 hit
17 hit
18 hit
19 hit

s π(s)
14 stay
15 hit
16 hit
17 hit
18 stay
19 stay

s π(s)
14 hit
15 hit
16 hit
17 hit
18 stay
19 stay

s π(s)
14 hit
15 hit
16 hit
17 hit
18 hit
19 stay

s π(s)
14 hit
15 hit
16 hit
17 stay
18 hit
19 stay

You find these features limiting, so you want a single set of features that can represent any arbitrary policy
for this game via Q-values in the form

∑n
i=1 wifi(s, a). Remember that policies are defined over all states with

choices: {0, 2, . . . , 21}, not just the states listed in the previous part.

(d) (1 pt) What is the minimum number N of features needed to be able to encode all policies in this manner?
Briefly justify your answer (no more than one sentence!).

The minimum number is 21. Every policy corresponds to a “quadrant” of the space of possible Q-value
differences {(Q(s,hit)−Q(s, stay))s=0,2,...,21}. Since this is a 21-dimensional space, 21 vectors of the form
(fi(s,hit)− fi(s, stay))s=0,2,...,21 are necessary to span the space and cover every quadrant.
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7. (12 points) Mumps Outbreak There has been an outbreak of mumps at UC Berkeley. You feel fine, but
you’re worried that you might already be infected and therefore won’t be healthy enough to take your CS 188
midterm. You decide to use Bayes nets to analyze the probability that you’ve contracted the mumps.

You first think about the following two factors:

• You think you have immunity from the mumps (+i) due to being vaccinated recently, but the vaccine is
not completely effective, so you might not be immune (−i).
• Your roommate didn’t feel well yesterday, and though you aren’t sure yet, you suspect they might have

the mumps (+r).

Denote these random variables by I and R. Let the random variable M take the value +m if you have the
mumps, and −m if you do not. You write down the following Bayes net to describe your chances of being sick:

I P(I) 

+i 0.8 

˗i 0.2 

R P(R) 

+r 0.4 

˗r 0.6 

I R M P(M|I,R) 

+i +r +m 0 

+i +r ˗m 1.0 

+i ˗r +m 0 

+i ˗r ˗m 1.0 

˗i +r +m 0.7 

˗i +r ˗m 0.3 

˗i ˗r +m 0.2 

˗i ˗r ˗m 0.8 

I 

M 

R 

(a) (2 pt) Fill in the following table with the joint distribution over I, M , and R, P (I,M,R).

I R M P (I,R,M)

+i +r +m 0

+i +r −m 0.32

+i −r +m 0

+i −r −m 0.48

−i +r +m 0.056

−i +r −m 0.024

−i −r +m 0.024

−i −r −m 0.096
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(b) (2 pt) What is the marginal probability P (+m) that you have the mumps?

P (+m) =
∑
i,r

P (i, r,+m) = P (+i,+r,+m) + P (+i,−r,+m) + P (−i,+r,+m) + P (−i,−r,+m)

= 0 + 0 + 0.056 + 0.024 = 0.08 =
8

100

(c) (3 pt) Assuming you do have the mumps, you’re concerned that your roommate may have the disease as
well. What is the probability P (+r | +m) that your roommate has the mumps given that you have the
mumps? Note that you still don’t know whether or not you have immunity.

P (+r | +m) =
P (+r,+m)

P (+m)
=

∑
i P (i,+r,+m)

P (+m)
=

0 + 0.056

0.080
= 0.143 =

7

10

You’re still not sure if you have enough information about your chances
of having the mumps, so you decide to include two new variables in
the Bayes net. Your roommate went to a frat party over the weekend,
and there’s some chance another person at the party had the mumps
(+f). Furthermore, both you and your roommate were vaccinated at
a clinic that reported a vaccine mix-up. Whether or not you got the
right vaccine (+v or −v) has ramifications for both your immunity (I)
and the probability that your roommate has since contracted the disease
(R). Accounting for these, you draw the modified Bayes net shown on
the right.

I 

M 

R 

V F 

(d) (5 pt) Circle all of the following statements which are guaranteed to be true for this Bayes net:

(i) V ⊥⊥M | I, R

(ii) V ⊥⊥M | R

(iii) M ⊥⊥ F | R

(iv) V ⊥⊥ F

(v) V ⊥⊥ F | M

(vi) V ⊥⊥ F | I

(i), (iv), (vi)
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8. (6 points) The Sound of (Silent) Music

You are an exobiologist, studying the wide range of life in the universe. You are also an avid dancer and have
an excellent model of the way species invent dancing. The key variables are:

Sound sensing (S): Whether or not a species has the abil-
ity to sense sound

Cold climate (C): Whether or not the native planet of the
species has cold weather

Music (M): Whether or not the species invented music

Non-verbal communication (N): Whether or not the
species has any form of non-verbal communication

You model the relationships between these variables and
dancing (D) using the Bayes net specified to the right.

C

D

NM

S

You want to know how likely it is for a dancing, sound-sensing species to invent music, according to this
Bayes net. However, you’re a doctor, not a dynamic programmer, and you can’t bear the thought of variable
elimination this late in the exam. So, you decide to do inference via sampling.

You use prior sampling to draw the samples below:

S C M N D
−s +c +m −n +d
+s +c −m −n −d
+s −c −m +n −d
+s +c +m −n +d
+s +c −m +n +d
+s −c −m +n −d
+s −c −m −n −d
+s +c +m +n +d
+s +c −m +n −d
−s −c −m −n −d

(a) (2 pt) Based on rejection sampling using the samples above, what is the answer to your query,
P (−m | +d,+s)?

1/3



16

While your sampling method has worked fairly well in many cases, for rare cases (like species that can’t sense
sound) your results are less accurate as rejection sampling rejects almost all of the data. You decide to use
likelihood weighting instead. The conditional probabilities of the Bayes net are listed below.

C M N D P( D | C , M , N )
+c +m +n +d 0.9
+c +m +n −d 0.1
+c +m −n +d 0.8
+c +m −n −d 0.2
+c −m +n +d 0.8
+c −m +n −d 0.2
+c −m −n +d 0.2
+c −m −n −d 0.8
−c +m +n +d 0.8
−c +m +n −d 0.2
−c +m −n +d 0.5
−c +m −n −d 0.5
−c −m +n +d 0.6
−c −m +n −d 0.4
−c −m −n +d 0.1
−c −m −n −d 0.9

S M P( M | S )
+s +m 0.8
+s −m 0.2
−s +m 0.1
−s −m 0.9

S N P( N | S )
+s +n 0.7
+s −n 0.3
−s +n 0.9
−s −n 0.1

S P( S )
+s 0.9
−s 0.1

C P( C )
+c 0.5
−c 0.5

You now wish to compute the probability that a species that has no sound-sensing (−s) or dancing (−d)
nonetheless has music (+m), using likelihood weighting. I.e., you want P (+m | −s,−d).

(b) (2 pt) You draw the samples below, using likelihood weighting. For each of these samples, indicate its
weight.

S C M N D weight

−s +c +m +n −d 0.01

−s +c −m −n −d 0.08

−s −c −m +n −d 0.04

−s +c +m +n −d 0.01

(c) (2 pt) Compute the answer to your query, P (+m | −s,−d), using likelihood weighting with these samples.

1/7


