Answer:

1) a) F b) F c) T d) T e) F

2) steady flow : $q-w=h_2-h_1$

 $h_2=q$ -w+ $h_1=200$ kJ- (-12 kJ)+ 93.42 kJ=305.42 kJ at p=140kPa -> the enthalpy of saturated vapor is hg(P=140kPa)=236.04 kJ now at the exit $h_2>hg(P=140kPa) --- \rightarrow$ the exit state is in the superheated vapor \rightarrow from superheated table at 140kPa -> T₂~ 60°C

3)

a) Take the water inside the cylinder as our system. When the piston touches the top stops, the pressure of water is $P=200kPa + 100kN/m \times 1m / 1m^2 = 300kPa$ The final pressure is 350kPa and the piston hits the top stops before reaching the final state.

b) the pressure increases from 100 kPa to 200kPa while the piston sits on the lower stops. Before the piston hits the upper stops, the pressure is constant at 200kPa. When the spring is compressed, the pressure increases linearly with volume until 300kPa. After the piston hits the upper stops, the pressure rises again while volume is held constant.	P 2006/Pa 2006/Pa 1006/Pa 9
---	---

c) work = 200kPa(2-1) + (200+300)/2 *1=450 kJ

d) p2=350kPa v2= $3m3/1kg= 3 m^3/kg \rightarrow this$ is beyond superheated table-> use ideal gas law as an approximation $\rightarrow T=pv/RT=$ $350x3/0.4615=2275K\sim2000C$ e) 1st law for a closed system Q-W = U2-U1 $\rightarrow Q=W+U2-U1$ State 1: U1= m1 u1 P1=100kpa v1= 1 kg/m3 Staturated state x1= (v1-vf)/vfg= 0.59 u1 = 0.59 x ug + (1-0.59)x uf= 1650.3 kJ

Sate 2: Use superheated table as a base -> u2=u_superheated at (1300C)+ Cv*(2000-1300)~ 5662 kg/kg (Cv~1.4 kJ/kg) Q= 450kJ + (5662- 1650.3) ~ 4462 kJ

4) As the air entering the turbine has uniform properties (constant in time):

 $\begin{array}{ll} 1^{st} law: & m_i \; h_i - W_{out} = m_2 \; u_2 \\ since \; m1 = 0 \; and \; Qin = Qout = Win = 0 \\ with \; constant \; Cp \; and \; Cv \; -> \; \; W_{out} = m_i \; C_p T_i - \; m_2 Cv T_2 \\ m_2 = m_i = \; PV/RT = \; 500 \; x1 \; / (0.287 x 250) = \; 6.969 \; kg \\ W_{out} = \; 6.969 \; kg \; x \; (\; 1 \; x \; 300 - 0.713 x \; 250) = \; 848.5 \; kJ \end{array}$