Answer:

1) a) Fb b Fc) Td) Te e F
2) steady flow: $q-w=h_{2}-h_{1}$

$$
\mathrm{h}_{2}=\mathrm{q}-\mathrm{w}+\mathrm{h}_{1}=200 \mathrm{~kJ}-(-12 \mathrm{~kJ})+93.42 \mathrm{~kJ}=305.42 \mathrm{~kJ}
$$

at $\mathrm{p}=140 \mathrm{kPa}->$ the enthalpy of saturated vapor is $\mathrm{hg}(\mathrm{P}=140 \mathrm{kPa})=236.04 \mathrm{~kJ}$ now at the exit $h_{2}>h g(P=140 \mathrm{kPa}) \rightarrow--\rightarrow$ the exit state is in the superheated vapor \rightarrow from superheated table at $140 \mathrm{kPa}->\mathrm{T}_{2} \sim 60^{\circ} \mathrm{C}$
3)
a) Take the water inside the cylinder as our system. When the piston touches the top stops, the pressure of water is $\mathrm{P}=200 \mathrm{kPa}+100 \mathrm{kN} / \mathrm{mx} 1 \mathrm{~m} / 1 \mathrm{~m}^{2}=300 \mathrm{kPa}$ The final pressure is 350 kPa and the piston hits the top stops before reaching the final state.
b) the pressure increases from 100 kPa to 200 kPa while the piston sits on the lower stops. Before the piston hits the upper stops, the pressure is constant at 200 kPa . When the spring is compressed, the pressure increases linearly with volume until 300 kPa . After the piston hits the upper stops, the pressure rises again while volume is held constant.

c) work $=200 \mathrm{kPa}(2-1)+(200+300) / 2 * 1=450 \mathrm{~kJ}$
d) $\mathrm{p} 2=350 \mathrm{kPa} \quad \mathrm{v} 2=3 \mathrm{~m} 3 / 1 \mathrm{~kg}=3 \mathrm{~m}^{3} / \mathrm{kg}->$ this is beyond superheated table-> use ideal gas law as an approximation $\rightarrow \mathrm{T}=\mathrm{pv} / \mathrm{RT}=$
$350 \times 3 / 0.4615=2275 \mathrm{~K} \sim 2000 \mathrm{C}$
e) $1^{\text {st }}$ law for a closed system

$$
\begin{aligned}
& \text { Q-W = U2-U1 } \rightarrow \quad \mathrm{Q}=\mathrm{W}+\mathrm{U} 2-\mathrm{U} 1 \\
& \text { State 1: U1 }=\mathrm{m} 1 \mathrm{u} 1 \mathrm{P} 1=100 \mathrm{kpa} \mathrm{v} 1=1 \mathrm{~kg} / \mathrm{m} 3 \\
& \text { Staturated state } \times 1=(\mathrm{v} 1-\mathrm{vf}) / \mathrm{vg}=0.59 \\
& \mathrm{u} 1=0.59 \mathrm{xug}+(1-0.59) \mathrm{xuf}=1650.3 \mathrm{~kJ}
\end{aligned}
$$

Sate 2: Use superheated table as a base -> u2=u_superheated at (1300C)+

$$
\text { Cv* } \left.{ }^{*} 2000-1300\right) \sim 5662 \mathrm{~kg} / \mathrm{kg}(\mathrm{Cv} \sim 1.4 \mathrm{~kJ} / \mathrm{kg})
$$

$$
\mathrm{Q}=450 \mathrm{~kJ}+(5662-1650.3) \sim 4462 \mathrm{~kJ}
$$

4) As the air entering the turbine has uniform properties (constant in time):

$$
\begin{aligned}
& 1^{\text {st }} \text { law: } \mathrm{m}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}}-\mathrm{W}_{\text {out }}=\mathrm{m}_{2} \mathrm{u}_{2} \\
& \text { since } \mathrm{m} 1=0 \text { and Qin=Qout=Win=0 } \\
& \text { with constant } \mathrm{Cp} \text { and } \mathrm{Cv}->\quad \mathrm{W}_{\text {out }}=\mathrm{m}_{\mathrm{i}} \mathrm{C}_{\mathrm{p}} \mathrm{~T}_{\mathrm{i}}-\mathrm{m}_{2} \mathrm{CvT}_{2} \\
& \mathrm{~m}_{2}=\mathrm{m}_{\mathrm{i}}=\mathrm{PV} / \mathrm{RT}=500 \times 1 /(0.287 \times 250)=6.969 \mathrm{~kg} \\
& \mathrm{~W}_{\text {out }}=6.969 \mathrm{~kg} \times(1 \times 300-0.713 \times 250)=848.5 \mathrm{~kJ}
\end{aligned}
$$

