
Mathematics 115 Professor K. A. Ribet
First Midterm Exam September 22, 2011

Please put away all cell phones, books, iPads, iPods, laptops, etc., etc. You may consult
a single two-sided sheet of notes. Please write carefully and clearly in complete sentences;
take pains to explain what you are doing instead of hoping that the grader will read your
mind.

This document contains some quick and dirty “answers” written by Ribet. The intention
is not to write up model solutions but rather to give a sense of how things should go.

1.(8 points) Calculate the gcd g of 345 and 357. Find integers x and y so that

g = 345x + 357y.

This is a pretty standard problem that we’ve done in class and that I hope you know how
to do without breaking a sweat. We have

357 = 345 + 12, 345 = 28 · 12 + 9, 12 = 9 + 3, 3|9.

Thus 3 is the gcd, and moreover

12 = 357−345, 9 = 345−28·12 = 29·345−28·357, 3 = 12−9 = · · · = 29·357−30·345.

2.(8 points) Find the prime factorization of 46!.

Clearly, only the primes ≤ 43 intervene in the factorization. Further, the exponent of p in
the prime factorization of 46! is b 46p c when p2 > 46, i.e., for p > 5. The exponents of 2, 3
and 5 in the factorization are slightly harder to compute; the general formula is

∑∞
i=1b

46
pi c,

as we saw in class. For the (presumably) correct answer, I turned to sage, which gives the
factorization

46! = 242 · 321 · 510 · 76 · 114 · 133 · 172 · 192 · 232 · 29 · 31 · 37 · 41 · 43.

3.(10 points) Let p be a prime number with p ≡ 3 mod 4. Using Wilson’s theorem, show that
(

p−1
2

)
!

is either +1 or −1 mod p.

To me, there are two points: first to show that the square of
(

p−1
2

)
! is 1 and second to

point out that the only numbers mod p whose squares are 1 are ±1. The second issue was
stressed in the book and also in lecture, so I hope that you at least allude to the fact that
this needs to be proved (and was). For the first issue, see the proof of Theorem 2.12 in



the book and notice that “the first factor on the right” in the first displayed equation on
page 54 is −1 rather than +1 when p ≡ 3 mod 4.

4.(10 points) Suppose that m and n are integers ≥ 2 for which (log m)/(log n) is rational, say
log m

log n
=

a

b
in lowest terms. Show that there is an integer c so that m = ca and n = cb.

Cross multiplication yields b log m = a log n, so that we have mb = na after exponentiation.
Let p1, . . . , pt be the prime numbers occurring in either the factorization of m or the
factoriation of n. Then we have prime factorizations m =

∏
pei

i , n =
∏

pfi

i , where the ei

and fi are non-negative integers. This gives two prime factorizations of mb = na, namely∏
pbei

i and
∏

pafi

i . The two must be the same by the fundamental theorem of arithmetic.
In concrete terms, we have bei = afi for each i.

For each i, we note that b divides afi and that gcd(a, b) = 1 (because the fraction was in
lowest terms). Hence b divides fi; say fi = bsi for some si. Similarly, one has ei = ari for
some ri. Then abri = bei = afi = absi; this shows that ri = si. We put c =

∏
pri

i and see
that ca = m and cb = n as required.

5. When f(x) is a function of a real variable, we have written ∆f(x) = f(x + 1) − f(x)
and have defined ∆kf(x) by the recursive formula ∆kf = ∆(∆k−1f).

a.(3 points) Show that ∆
(
x
i

)
=
(

x
i−1

)
for i ≥ 1.

The polynomial identity to be proved is

(x + 1)x(x− 1) · · · (x− i + 2)
i!

− x(x− 1)(x− 2) · · · (x− i + 1)
i!

=
x(x− 1) · · · (x− i + 2)

(i− 1)!
.

All terms in the fraction on the right-hand side appear in both fractions on the left-hand
side. After we factor out those terms from the fractions on the left-hand side, what remains
in the first fraction on the left-hand side is x+1

i ; for the second fraction, what remains is
x−i+1

i . The difference of these two terms is i
i = 1.

b.(6 points) If f(x) =
∑n

i=0 ci

(
x
i

)
, show that ci = ∆if(x) |x=0 for i = 0, . . . , n.

One point is that
(
x
i

)
vanishes at x = 0 for i > 0. Setting x = 0 in the given equation

f(x) =
∑n

i=0 ci

(
x
i

)
, we thus get f(0) = c0. Because ∆c = 0 when c is a constant, part (a)

yields ∆f(x) =
∑n

i=1 ci

(
x

i−1

)
. Setting x = 0 again, we obtain ∆f(0) = c1. By repeated

“differentiation” (i.e., application of ∆), we obtain analogous formulas for c2, c3, etc.


