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1. (40 pts) A particle of mass m is confined to the region between x=0 and x=L, and in this
region, it has no potential energy. The stationary state wave functions in that region obey
the eigenfunction equation (−~2/2m) d2ψ/dx2 = Eψ(x) with the boundary conditions ψ(0) =
ψ(L) = 0. The set of solutions to this equation coincide with the quantized energy eigen-
values En = ~2k2n /2m, where kn = nπ/L, with n = 1, 2, 3, ... and ψn(x) = (

√
2/L)sin(knx).

Consider that the particle in the box is prepared in a properly normalized, non-stationary
state of the first and third energy levels (the ground state and the second excited state):

ψ(x, 0) = (1/
√

2)(ψ1(x) + ψ3(x))

(a) A single measurement of energy is carried out. What values of energy could be measured
and with what probabilities?

Solution:

From examination or intuition: Since the wavefunction is a superposition of the first
and third energy eigenstates, the only energies we can detect are E1 or E3. Furthermore,
since the coefficients in the expansion are the same, there is an equal probability of
observing either energy.

Proof: The postulates of quantum mechanics tell us that the we will only ever measure
an eigenvalue of the operator corresponding to an observable with probability given by
the square of the coefficient when we represent the wavefunction in the eigenfunction
basis. We see that our wavefunction is already written as a sum of energy eigenfunctions:

ψ(x, 0) =
1√
2
ψ1(x) +

1√
2
ψ3(x)

So we know that we will measure eigenvalue E1 with probability (1/
√

2)2 = 1/2 and
likewise measure E3 with probability 1/2.

(b) A single measurement of momentum is carried out. What values of momentum could
be measured and with what probabilities?

Solution:
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Again, we must write our wavefunction out in terms of eigenfunctions, but this time
they are eigenfunctions of p̂, the momentum operator, which look like:

φn =
1√
L
eiknx

with corresponding eigenvalues ~k. Using the fact that,

sin(kx) =
eikx − e−ikx

2i

We can write our wave function out as a sum of momentum eigenstates:

ψ(x, 0) =
1

2i
√
L

(
eik1x − e−ik1x + eik3x − e−ik3x

)
=

1

2i
(φ1 − φ−1 + φ3 − φ−3)

Thus we have probability

∣∣∣∣ 1

2i

∣∣∣∣2 =
1

4
of measuring a momentum of ±~k1 or ±~k3.

(c) Determine the expectation value of energy, < H >, at a later time t.

Solution: The expectation value is independent of time. Recall that the expectation
value is a weighted average of the allowed energy values. Thus the expression for the
expectation value will show us the allowed energies and their relative probabilities

Proof:

< ψ|Ĥ|ψ > =
1

2
< sin(k1x)e

ı
E1

~
t)

+ sin(k3x)e
ı
E3

~
t)
|Ĥ| sin(k1x)e

ı
E1

~
t)

+ sin(k3x)e
ı
E3

~
t)
>

=
1

2
[< sin(k1x)|Ĥ| sin(k1x) > + < sin(k1x)|Ĥ| sin(k3x) > e

ı
E3 − E1

~
t)

+ < sin(k3x)|Ĥ| sin(k1x) > e
ı
E1 − E3

~
t)

+ < sin(k3x)|Ĥ| sin(k3x) >]

=
1

2
[E1 < sin(k1x)| sin(k1x) > +E3 < sin(k1x)| sin(k3x) > e

ı
E3 − E1

~
t)

+ E1 < sin(k3x)| sin(k1x) > e
ı
E1 − E3

~
t)

+ E3 < sin(k3x)| sin(k3x) >]

=
1

2
[E1 + E3]

(d) Write out the expectation value of position, < x >, at a later time t (you do not need
to calculate spatial integrals). With what frequency does it oscillate?
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Solution:

< ψ|x̂|ψ > =
1

2
< sin(k1x)e

ı
E1

~
t)

+ sin(k3x)e
ı
E3

~
t)
|x̂| sin(k1x)e

ı
E1

~
t)

+ sin(k3x)e
ı
E3

~
t)
>

=
1

2
[< sin(k1x)|x̂| sin(k1x) > + < sin(k1x)|x̂| sin(k3x) > e

ı
E3 − E1

~
t)

+ < sin(k3x)|x̂| sin(k1x) > e
ı
E1 − E3

~
t)

+ < sin(k3x)|x̂| sin(k3x) >]

=
1

2
[I(x)+ < sin(k1x)|x̂| sin(k3x) > e

ı
E3 − E1

~
t)

+ < sin(k3x)|x̂| sin(k1x) > e
−ı
E3 − E1

~
t)

]

= I(x)+ < sin(k1x)|x̂| sin(k3x) > cos(ω31t)

Where I(x) =< sin(k1x)|x̂| sin(k1x) > + < sin(k3x)|x̂| sin(k3x) >, which doesn’t vary

with time and ω31 =
E3 − E1

~
.

2. (28 pts) Consider a mass moving in the 1D potential shown in Figure 1.

(a) Sketch the energy levels of the bound states.

(b) Label the region of continuous states.

(c) Sketch out the wavefunctions of the bound states for the lowest three energy levels. How
many nodes does each have?

(d) Label the region where quantum tunneling would be observed.

Solution:
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Region

Figure 1

Tunneling
Region (Hatched)

0 Nodes

1 Node

2 Nodes

3. (28 pts) This problem poses questions about the one-dimensional harmonic-oscillator system:
a particle of mass m with the potential energy V (x) = (1/2)k x2 oscillates with frequency
ω0 =

√
k/m. The stationary-state solutions to Schrodinger’s equation lead to the quantized

energy levels of this system, En = (1/2 + n)~ω0, n = 0, 1, 2, ....

The normalized wave-function for the two lowest energy stationary states are

ψ0(x) = (mω0/π~)1/4 exp(−mω0 x
2 /2~)

and
ψ1(x) = (4m3ω3

0/π~3)1/4 x exp(−mω0 x
2 /2~),

respectively. Circle which of the following is true about the harmonic oscillator:

(a) The expectation value of x is zero in all eigenstates because they are either even or odd
functions of x.

(b) As the mass m increases, the spacing between adjacent energy levels increases.
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(c) The uncertainty in position in the lowest energy eigenstate decreases with increasing
mass, m.

(d) There are an even number of nodes with states of even n, and an odd number of nodes
for states with odd n.

(e) The lowest energy eigenstate is (1/2)~ω0 above the minimum energy of a classical mass
in the same harmonic oscillator potential.

(f) If prepared in the non-stationary state Ψ(x, 0) = 1√
2

[ψ0(x) + ψ1(x)], the expectation

value of position, < x > oscillates with 2ω0 (or cos(2ω0t)).

(g) It is possible to simultaneously measure momentum and energy for the stationary state
solutions because the momentum operator commutes with the Hamiltonian.

Solutions: T,F,T,T,T,F,F

(a) True. The hermite polynomials are all even or odd, so squaring them gives an even
function (you can also figure this out from the fact that the potential is symmetric, so
the probability density must have the same symmetry). Taking this even probability
density, multiplying by x (an odd function) and integrating gives zero.

(b) False. The spacing between energy levels is given by ~ω0 where we are given that
ω0 =

√
k/m. Thus increasing m decreases the spacing.

(c) True. The important thing to notice is that the lowest energy eigenstate is purely a
gaussian. Writing it in the form

ψ(x) = e−x
2/(4σ2

x)

gives us that σ2x =
~

2mω0
=

~
2
√
mk

. So we see that the uncertainty decreases with the

fourth root of mass. Extra note: the 1/4 in the exponent is there instead of the 1/2 you
see in a Gaussian distribution because it it the square of the wave function that gives
the distribution, not the wave function itself.

(d) True. We know that the lowest energy eigenstate will have no nodes and nodes increase
by one with energy quantum number. Since the first n is 0, we see that there is one
node for n = 1, two for n = 2, and realize that even n gives even nodes, odd n gives odd
number of nodes.

(e) True. The lowest state corresponds to n = 0 and an energy of (1/2)~ω0. Classically, we
know that the spring will oscillate back and forth, and when it is at the minimum will
have a potential energy of 0.

(f) False. Since the wavefunctions are real, the oscillation in time will go as ,

cos(
E2 − E1

~
t) = cos(ω0t)
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Explicitly:

〈Ψ|x|Ψ〉 =
1

2
〈ψ1|x|ψ1〉+

1

2
〈ψ2|x|ψ2〉+

1

2
〈ψ1|x|ψ2〉+

1

2
〈ψ2|x|ψ1〉

= I(x) +
1

2

∫ ∞
−∞

ψ∗1(x)ψ2(x)e−i(E2−E1)t/~xdx+
1

2

∫ ∞
−∞

ψ1(x)ψ∗2(x)ei(E2−E1)t/~xdx

= I(x) + cos(ω0t)

∫ ∞
−∞

ψ1(x)ψ2(x)xdx

Here I have just called grouped the first two inner products into one term since neither
are time-dependent.

(g) False. As shown in PS3, [p̂, Ĥ] = 0 if and only if V (x) is constant over all x which it is
not.

6


