
Midterm #1 Solutions

Physics 7C Fall 2011

1. (a) (3 points) Plane waves near the Earth’s surface, satisfying the conditions given are
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ŷ cos

(
2π

λ
z − 2πc

λ
t

)
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2. (a) (3 points) See Figure 1.

tan θ0 =
x

d0

tan θ′ =
x

d′

d′ tan θ′

d0 tan θ0
≈ d′θ′

d0θ0
= 1

θ0
θ′
≈ n1
n2

(Snell’s law)

d′ =
n1
n2
d0

(b) (3 points) See Figure 2.
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Figure 1: Problem 2(a)

Figure 2: Problem 2(b)

(c) (2 points)
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(d) (2 points) No matter where the outside light ray comes from, it is refracted to an angle θ ≤ θcrit. Thus the
field of view is given by α = 2θcrit = 2 sin−1 n2

n1
.

3. (a) (1 point1 )
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(b) (2 points) Let d be the distance from the first image where we will place the eyepiece. The image distance
is −d1, so
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(c) (2 points) See Figure 3.

Figure 3: Problem 3(c)
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(g) (1 point) h = d1αmin

(h) (1 point) The eye sees the magnified image h′ = |M |ho. Thus, at the limit of resolution
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4. (a) (1 point) The straight path is d, simple trigonometry shows the reflected path is 2
√
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(b) (2 points) Remembering the extra phase shift from reflection,
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(c) (3 points)
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(d) (3 points) A calculation similar to part (c) (but with m+ 1/2→ m) yields

d =
2H2

mλ0
− mλ0

2

(e) (1 point) Using the answer to part (d) and plugging in m ≤ 0 does not yield a finite, positive solution for d,
and so are not allowed. Increasing m decreases the first term, while increasing the second (negative) term,
thus causes d to decrease. So the largest possible distance occurs for m = 1,
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