# Midterm \#1 Solutions Physics 7C Fall 2011 

1. (a) (3 points) Plane waves near the Earth's surface, satisfying the conditions given are

$$
\begin{aligned}
\mathbf{E} & =E_{0} \hat{x} \cos \left(\frac{2 \pi}{\lambda} z-\frac{2 \pi c}{\lambda} t\right) \\
\mathbf{B} & =\frac{E_{0}}{c} \hat{y} \cos \left(\frac{2 \pi}{\lambda} z-\frac{2 \pi c}{\lambda} t\right)
\end{aligned}
$$

(b) (2 points) $I=\frac{1}{2} c \epsilon_{0} E_{0}^{2}$ You may also express it as in part (c).
(c) (2 points)

$$
\begin{gathered}
I=\frac{P_{S}}{4 \pi d_{E}^{2}}=\frac{1}{2} c \epsilon_{0} E_{0}^{2} \\
E_{0}=\sqrt{\frac{P_{S}}{2 \pi c \epsilon_{0} d_{E}^{2}}} \\
\mathbf{E}=\sqrt{\frac{P_{S}}{2 \pi c \epsilon_{0} d_{E}^{2}}} \hat{x} \cos \left(\frac{2 \pi}{\lambda} z-\frac{2 \pi c}{\lambda} t\right) \\
\mathbf{B}=\frac{1}{c} \sqrt{\frac{P_{S}}{2 \pi c \epsilon_{0} d_{E}^{2}}} \hat{y} \cos \left(\frac{2 \pi}{\lambda} z-\frac{2 \pi c}{\lambda} t\right)
\end{gathered}
$$

(d) i. (1 point)

$$
\begin{gathered}
\frac{1}{\infty}+\frac{1}{d_{i}}=\frac{1}{f} \\
d_{i}=f
\end{gathered}
$$

ii. (2 points)

$$
P=I \cdot A=\frac{P_{S}}{4 \pi d_{E}^{2}} \frac{\pi D^{2}}{4}
$$

2. (a) (3 points) See Figure 1.

$$
\begin{gathered}
\tan \theta_{0}=\frac{x}{d_{0}} \\
\tan \theta^{\prime}=\frac{x}{d^{\prime}} \\
\frac{d^{\prime} \tan \theta^{\prime}}{d_{0} \tan \theta_{0}} \approx \frac{d^{\prime} \theta^{\prime}}{d_{0} \theta_{0}}=1 \\
\frac{\theta_{0}}{\theta^{\prime}} \approx \frac{n_{1}}{n_{2}}(\text { Snell's law }) \\
d^{\prime}=\frac{n_{1}}{n_{2}} d_{0}
\end{gathered}
$$

(b) (3 points) See Figure 2.

Figure 1: Problem 2(a)


Figure 2: Problem 2(b)

(c) (2 points)

$$
\begin{gathered}
\frac{1}{d^{\prime}}+\frac{1}{d_{i}}=\frac{1}{f_{1}} \\
d^{\prime}=\frac{n_{1}}{n_{2}} d_{0} \\
\frac{1}{\frac{n_{1}}{n_{2}} d_{0}}+\frac{1}{d_{i}}=\frac{1}{f_{1}} \\
\frac{n_{2}}{d_{0}}+\frac{n_{1}}{d_{i}}=\frac{n_{1}}{f_{1}}
\end{gathered}
$$

(d) (2 points) No matter where the outside light ray comes from, it is refracted to an angle $\theta \leq \theta_{\text {crit }}$. Thus the field of view is given by $\alpha=2 \theta_{\text {crit }}=2 \sin ^{-1} \frac{n_{2}}{n_{1}}$.
3. (a) (1 point1)

$$
\begin{gathered}
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f_{o}} \\
d_{i}=\frac{f_{o} d_{o}}{d_{o}-f_{o}}
\end{gathered}
$$

(b) (2 points) Let $d$ be the distance from the first image where we will place the eyepiece. The image distance is $-d_{1}$, so

$$
\frac{1}{d}+\frac{1}{-d_{1}}=\frac{1}{f_{e}}
$$

$$
d=\frac{d_{1} f_{e}}{d_{1}+f_{e}}
$$

(c) (2 points) See Figure 3.

Figure 3: Problem 3(c)

(d) (1 point)

$$
m_{o}=-\frac{d_{i}}{d_{o}}=\frac{f_{o}}{f_{o}-d_{o}}
$$

(e) (1 point)

$$
m_{e}=-\frac{-d_{1}}{d}=\frac{d_{1}+f_{e}}{f_{e}}
$$

(f) (1 point)

$$
M=m_{o} m_{e}=\frac{f_{o}}{f_{e}} \frac{d_{1}+f_{e}}{f_{o}-d_{o}}
$$

(g) (1 point) $h=d_{1} \alpha_{\text {min }}$
(h) (1 point) The eye sees the magnified image $h^{\prime}=|M| h_{o}$. Thus, at the limit of resolution

$$
h_{o}=\frac{\alpha_{\min } d_{1}}{|M|}
$$

4. (a) (1 point) The straight path is $d$, simple trigonometry shows the reflected path is $2 \sqrt{H^{2}+(d / 2)^{2}}$, so

$$
\Delta \ell=\sqrt{4 H^{2}+d^{2}}-d
$$

(b) (2 points) Remembering the extra phase shift from reflection,

$$
\begin{gathered}
\Delta \phi=\frac{2 \pi}{\lambda_{0}} \Delta \ell+\pi \\
\Delta \phi=\frac{2 \pi}{\lambda_{0}}\left(\sqrt{4 H^{2}+d^{2}}-d+\frac{\lambda_{0}}{2}\right)
\end{gathered}
$$

(c) (3 points)

$$
\begin{gathered}
\Delta \phi=2 \pi m \\
\left(m+\frac{1}{2}\right) \lambda_{0}=\sqrt{4 H^{2}+d^{2}}-d \\
{\left[\left(m+\frac{1}{2}\right) \lambda_{0}+d\right]^{2}=4 H^{2}+d^{2}}
\end{gathered}
$$

$$
\begin{gathered}
{\left[\left(m+\frac{1}{2}\right) \lambda_{0}\right]^{2}+2 d\left(m+\frac{1}{2}\right) \lambda_{0}=4 H^{2}} \\
d=\frac{2 H^{2}}{\left(m+\frac{1}{2}\right) \lambda_{0}}-\frac{\left(m+\frac{1}{2}\right) \lambda_{0}}{2}
\end{gathered}
$$

(d) (3 points) A calculation similar to part (c) (but with $m+1 / 2 \rightarrow m$ ) yields

$$
d=\frac{2 H^{2}}{m \lambda_{0}}-\frac{m \lambda_{0}}{2}
$$

(e) (1 point) Using the answer to part (d) and plugging in $m \leq 0$ does not yield a finite, positive solution for $d$, and so are not allowed. Increasing $m$ decreases the first term, while increasing the second (negative) term, thus causes $d$ to decrease. So the largest possible distance occurs for $m=1$,

$$
d=\frac{2 H^{2}}{\lambda_{0}}-\frac{\lambda_{0}}{2}
$$

