Math 104 - Midterm 1

Lecture 4, Fall 2011
September 30, 2011

Name:

1. (10 points) Give an example of each of the following. You do not need to give any justification.
(a) A nonempty, bounded subset of $\mathbb{R} \backslash \mathbb{Q}$ with no infimum in $\mathbb{R} \backslash \mathbb{Q}$.
(b) A subspace of \mathbb{R} containing \mathbb{Z} in which $\{-4\}$ is open but $\{3\}$ is not.
(c) A nonempty subspace of $\mathbb{R} \backslash \mathbb{Q}$ which is complete in the metric space sense.
(d) An uncountable open subset of $(-1,1) \cap(\mathbb{R} \backslash \mathbb{Q})$ which is not all of $(-1,1) \cap(\mathbb{R} \backslash \mathbb{Q})$.
(e) A bounded sequence in $\{x \in \mathbb{R} \backslash \mathbb{Q} \mid-\pi<x<\pi\}$ which is not Cauchy in \mathbb{R}.
2. (15 points) For each $n \in \mathbb{N}$, let $f_{n}:[0,1] \rightarrow \mathbb{R}$ denote the function defined by

$$
f_{n}(x):= \begin{cases}\frac{1}{3} x^{n} & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Compute the distance between $10 f_{n}$ and f_{n} in $C_{b}([0,1])$ with respect to the sup metric and prove that your answer is correct. (Careful: note that $f_{n}(1)=0$ and not 1 for all n.)
3. (15 points) Suppose that $\left(x_{n}\right)$ is a sequence of real numbers and that $a, b \in \mathbb{R}$ with $a \neq 0$.
(a) If (x_{n}) converges to x and $a x_{n}+b \geq 0$ for all n, show that $\left(\sqrt{a x_{n}+b}\right)$ converges to $\sqrt{a x+b}$.
(b) Give an example, with brief justification, where $\left(x_{n}^{4}\right)$ converges but $\left(x_{n}\right)$ does not.
(c) If $\left(x_{n}^{2}\right)$ converges to 0 , show that $\left(x_{n}\right)$ converges to 0 .

In (a) you must use only the definition of convergence and no other limit theorems.
4. (10 points) Suppose that (X, d) is a metric space and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite set of points of X. Show, using only the definition of open, that the set $X \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ obtained by removing each x_{i} from X is open in X. (Draw a picture to get some intuition!)
5. (0 points) Draw a picture of your favorite closed subset of \mathbb{R}^{2}.

