Scluticus to preb. 1
a)

$$
\begin{aligned}
& p=1 a \mathrm{tm}=1.01325 \times 10^{5} \mathrm{~Pa} \\
& V=1 \mathrm{~cm}^{3}=10^{-4} \mathrm{~m}^{3} \\
& N=10^{20} \\
& T=\frac{\rho V}{N k_{R}}=72.3 \mathrm{k}
\end{aligned}
$$

Marks
(2) : ideral eas law
(1) : ecrirect N
(1) $\equiv V$ in correct units
(1) \equiv i P in ecrrect units (1 point dediected if auswer was miecalcaticted wy the corret rumbers).

$$
\begin{aligned}
& \text { b) } N(v \rightarrow N+\Delta v) \pm f(v) \cdot \Delta v=4 \pi N\left(\frac{m}{2 w k_{8} T}\right)^{3 / 2} \cdot v^{2} \cdot e^{-m v^{2} /\left(2 v_{0} T\right)} \cdot \Delta v \\
& T=k C k \\
& m=m_{c_{2}}=2 . A \cdot u=2.16 .1 .66 \times 10^{-77} \mathrm{~kg}=5.31 \times 10^{-16} \mathrm{~kg} \\
& N(1000 \rightarrow 100)=4 \pi N\left(\frac{m_{1}}{2 \pi k_{0} T}\right)^{3 / 2} \cdot\left(1(\operatorname{com} / \mathrm{s})^{*} \cdot e^{-m \cdot(1 \operatorname{coc} \omega / A)^{2} /\left(\pi L_{k} T\right)} \cdot 1 \mathrm{~m} / \mathrm{s}\right. \\
& N(30 c-2 n)=4 \pi N \cdot\left(\frac{m}{2 \pi b_{e} T}\right)^{3 / 2} \cdot(2 c c m / n)^{7} \cdot \epsilon^{m(3 c c / s)^{*} /(76+t)} \cdot 1 \mathrm{~m} /
\end{aligned}
$$

Harks:
(2) in $\int_{c}^{\infty} f(v) d v=N$ (entus diectily or indinecthy staked)
() for $f(v)=4 \pi N\left(m /\left(2 \pi k_{8} t\right)\right)^{3 / 2} \quad v^{2} k^{-n \cdot v^{2} / 2 u_{8} T}$

(2) bex having the corect weres

(1) cerrest finat amsund aworded ouly it finat ansuerer wan ter it

McKee problem \# 2

February 28, 2011

The key thing to notice is that the wind from the chinook is fast so it does not exchange heat with its surrounding. This means that the process is adiabatic [5 pts.]. Also, we are told that the air molecules are diatomic, which means $d=5$ [1 pt.] and $\gamma=\frac{d+2}{d}=\frac{7}{5}[\mathbf{1} \mathbf{p t}$.$] . Finally, since we are told the wind is strong it is safe to assume$ that the chinook entirely displaces the air originally in Denver.

Using the ideal gas law $P V=N k T$ [1 pt.], we can rewrite the adiabatic equation in terms of P and T :

$$
\begin{gather*}
P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \\
\Rightarrow P_{1}\left(\frac{N k T_{1}}{P_{1}}\right)=P_{2}\left(\frac{N k T_{2}}{P_{2}}\right) \\
\Rightarrow P_{1}^{1-\gamma} T_{1}^{\gamma}=P_{2}^{1-\gamma} T_{2}^{\gamma} . \tag{0.1}
\end{gather*}
$$

Fully solving for this equation, or using any other method to find an expression for T from the adiabatic equation, gave you [5 pts.]. Partial credit was given to students who had the right idea but did not quite get to the final equation.

Plugging in the given values, we find $T_{2}=287 \mathrm{~K}=14^{\circ} \mathrm{C}$ so $\Delta T=12^{\circ} \mathrm{C}$ [2 pts.].
Common mistakes: (i) Assuming that this is a constant volume process, and solving for the temperature from the ideal gas law: $P_{1} / T_{1}=P_{2} / T_{2}$. In fact, volume is changing as can easily be seen from the adiabatic equation $P V^{\gamma}=$ const.
(ii) Using the calorimetry equation $\Delta Q=C_{V} \Delta T$. This is incorrect (a) because there is no heat flow, $Q=0$, and (b) because this equation can only be used in constant volume processes, while the volume of the wind is changing since the process is adiabatic.
(iii) Integrating to find the work in an adiabatic process and using the first law to try to solve for T. It is true that for an adiabatic process $(Q=0)$, the first law gives

$$
\begin{equation*}
\Delta E_{i n t}=Q-W=-W \tag{0.2}
\end{equation*}
$$

However, trying to use this to solve for T results in a tautology:

$$
\begin{align*}
\Delta E_{\text {int }} & =-W \\
\Rightarrow \frac{d}{2} N k\left(T_{2}-T_{1}\right) & =-\int_{V_{1}}^{V_{2}} P d V \\
& =-P_{1} V_{1}^{\gamma} \int_{V_{1}}^{V_{2}} \frac{d V}{V^{\gamma}} \\
& =\frac{P_{1} V_{1}^{\gamma}}{\gamma-1}\left(V_{2}^{1-\gamma}-V_{1}^{1-\gamma}\right) \\
& =\frac{1}{\gamma-1}\left(P_{2} V_{2}-P_{1} V_{1}\right) \\
& =\frac{d}{2}\left(P_{2} V_{2}-P_{1} V_{1}\right) \\
& =\frac{d}{2} N k\left(T_{2}-T_{1}\right) . \tag{0.3}
\end{align*}
$$

(In the third line we substituted the adiabatic equation, and in the final line we used the ideal gas law.) Trying to solve this for T is like trying to solve for T from the equation $1=1$.

Note: Instead of starting from the adiabatic equation, some students started going through the steps needed to derive it. The correct argument goes like this: starting from the first law in infinitesimal form with $Q=0$,

$$
\begin{align*}
& \frac{d}{2} N k d T=-P d V \\
\Rightarrow & \frac{d}{2} d(P V)=-P d V \\
\Rightarrow & \frac{d}{2} V d P=-\left(\frac{d}{2}+1\right) P d V \\
\Rightarrow & \frac{d P}{P}=-\left(\frac{d+2}{d}\right) \frac{d V}{V} \\
\Rightarrow & \int_{P_{1}}^{P_{2}} \frac{d P}{P}=-\gamma \int_{V_{1}}^{V_{2}} \frac{d V}{V} \\
\Rightarrow & \ln P_{2}-\ln P_{1}=-\gamma \ln V_{2}+\gamma \ln V_{1} \\
\Rightarrow & P_{1} P_{2}^{-1}=V_{1}^{-\gamma} V_{2}^{\gamma} \\
\Rightarrow & P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} . \tag{0.4}
\end{align*}
$$

Of course you didn't need to derive the equation to use it.

Problem 3, Mckee Midterm 1, Spring 2011

a) monatomic ideal gas $\Rightarrow 3$ degrees of freedom

$$
P_{1} V_{1}=P_{2} V_{2} . \quad T_{1}=\frac{P_{1} V_{1}}{N k}=T_{2}
$$

isothermal $\Rightarrow \Delta T=0 \Rightarrow \Delta E=0$.
lIst law $\Delta E=Q-W=0 \Rightarrow Q=\omega$. (

$$
\begin{aligned}
& W=\int_{V_{1}}^{V_{2}} P d V=\int_{V_{1}}^{V_{2}} \frac{N k T}{V} d V=P_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& Q_{a}=P_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right) \quad\left(\text { or } Q_{a}=P_{2} V_{2} \ln \left(\frac{V_{2}}{V_{1}}\right)\right)
\end{aligned}
$$

b) isovolumetric $\Rightarrow \omega=0, \Rightarrow Q=\Delta E$

$$
\begin{aligned}
T_{3}=\frac{P_{2} V_{1}}{N K_{B}} \quad T_{1}=\frac{P_{2} V_{2}}{N K_{B}} \quad \Delta E & =\frac{d}{2} N K \Delta T \\
& =\frac{3}{2} A K\left(\frac{P_{2} V_{A}}{N K}-\frac{P_{2} V_{2}}{N K}\right) \\
Q_{i} & =\frac{3}{2} P_{2}\left(V_{7}-V_{2}\right)
\end{aligned}
$$

isobaric : since $T_{1}=T_{2}, \Delta E_{i}=-\Delta E_{i i}$

$$
\begin{gathered}
\Delta E_{i i}=+\frac{3}{2} P_{2}\left(V_{2}-V_{1}\right) ; W_{i 1}=P_{2}\left(V_{2}-V_{1}\right) \\
Q_{i i}=\Delta E_{i i}+W_{i i}=\frac{5}{2} P_{2}\left(V_{2}-V_{1}\right) \\
Q_{b}=Q_{i i}+Q_{i}=P_{2}\left(V_{2}-V_{1}\right) \quad Q_{b}=P_{2}\left(V_{2}-V_{1}\right)
\end{gathered}
$$

Goring Rubric \＃3
5 pt．isothermal．
4 pts if no work． ers if not written in terms of given $P_{1} V_{1}$ etc．

2 pts W Q pts．$\Delta E=0 \Rightarrow Q=\omega$ ． 2 pes．$T_{1}=\frac{P_{1} V_{1}}{N k}$.
-1 for $P V \ln \left(\frac{V_{2}}{V_{1}}\right.$

$$
-2 \text { for } Q=P_{1} V\left(1-\frac{v_{1}}{V_{2}}\right)
$$

\＄pe is isovolumetric
重各多 事
-1 for writing

$$
2 \text { pts } T_{3}, T_{1}
$$

$$
\left(T_{2}-T_{1}\right)(-0) \quad Q_{i}=\frac{3}{2}(P) \not ⿻_{2} V_{1}\left(P_{2}-P_{1}\right)
$$

-1 for not knowing

$$
d=3
$$

pts．isobaric．
$\left.1 p+p \Delta V<\begin{array}{rl}43 & \Delta E \rightarrow 2 p t s \\ 3 & W\end{array}\right\}$
$\perp 1 \mathrm{pt}. \quad \Delta E=\frac{d}{2} N K \Delta T$ ．

$$
\begin{aligned}
& \begin{array}{l}
1 p^{+} P=P_{2} \\
1 p^{x} v_{2} v_{1}
\end{array} Q=\frac{5}{2} P_{2}\left(v_{2}-v_{1}\right)=\frac{5}{2} V_{1}\left(P_{1}-P_{2}\right) \\
& \frac{3}{2} P_{2} V_{1}-\frac{3}{2} P_{1} V_{1} \\
& +\frac{5}{2} P_{2} V_{2}-\frac{5}{2} R V_{1} \\
& = \\
& { }^{-2} \text { for }-Q_{i}+Q_{i i}=Q_{\text {tot }} \text {. } \\
& -2 \text { for }\left(T_{i}-T_{f}\right),\left(\Delta T_{i}=\Delta T_{i i}\right) \\
& \frac{5}{2} P_{2} V_{2}-\frac{3}{2} P_{1} V_{1}-P_{2} V_{1} \\
& =V_{1}\left(P_{1}-P_{2}\right)
\end{aligned}
$$

Problem 4

Givens: Refrigerator with $\mathrm{T}_{\mathrm{L}}=-17^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{H}}=25^{\circ} \mathrm{C}$,

$$
\begin{align*}
& \mathrm{m}=0.4 \mathrm{~kg}, \mathrm{c}_{\mathrm{ice}}=0.5 \mathrm{cal} \mathrm{~g}^{-1} \mathrm{~K}^{-1}, \mathrm{~L}_{\mathrm{f}}=333 \mathrm{~kJ} \mathrm{~kg}^{-1} \\
& \mathrm{c}_{\text {water }}=4186 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \tag{1pt}\\
& c_{\text {ice }}=\left(0.5 \frac{\mathrm{cal}}{g K}\right)\left(\frac{4.185 \mathrm{~J}}{\mathrm{cal}}\right)\left(\frac{1000 \mathrm{~g}}{k g}\right)=2092 \frac{\mathrm{~J}}{\mathrm{~kg} \mathrm{~K}} \\
& Q_{L}=m c_{\text {water }} \Delta T_{1}+m L_{f}+m c_{\text {ice }} \Delta T_{2} \\
& Q_{L}=(0.4)(4186)(25)+(0.4)(333000)+(0.4)(2092)(17)=1.89 * 10^{5} \mathrm{~J} \tag{6pts}
\end{align*}
$$

Carnot Refrigerator: $\quad C O P=\frac{T_{L}}{T_{H}-T_{L}}=\frac{(273-17)}{(273+25)-(273-17)}=6.095$

$$
\begin{equation*}
C O P=\frac{Q_{L}}{W} \quad \rightarrow \quad W=\frac{Q_{L}}{C O P}=1.89 * 10^{5} / 6.095=\mathbf{3 . 1 1} * \mathbf{1 0}^{4} \mathrm{~J} \tag{3pts}
\end{equation*}
$$

Common mistakes:

- saying that Q is W and ignoring COP .
- using the COP for a heat pump instead of a refrigerator
- using $\Delta \mathrm{E}=\mathrm{Q}-\mathrm{W}$, which applies to the working substance of the refrigerator, not the water
- unit conversion errors

Minke midterm 1
Problem 5
a. $\Delta i=\int \frac{d Q}{T}$

But since T is constant

$$
\begin{aligned}
& \Delta S=\frac{1}{T} \int d Q=\frac{Q}{T} \quad\left[\begin{array}{ll}
2 & \text { point }
\end{array}\right] \\
& =\frac{-m_{w} L_{v}-m_{w} L_{\text {steam }} \Delta T_{\text {gallon }} \quad[2 \text { points }]}{T} \\
& =\frac{1}{423 k}\left((1 g)(2260 \mathrm{~J} / \mathrm{g})+\left(4.186 \frac{\mathrm{~J} / \mathrm{cal}}{}\right)\left(.48 \frac{\mathrm{cal}}{\mathrm{gK}}\right)(1 \mathrm{~g})(500 \mathrm{~K})\right) \\
& =-5.58 \mathrm{~J} / \mathrm{k} \\
& \text { [3 points] }
\end{aligned}
$$

b.

$$
\begin{aligned}
& \Delta s=\Delta \text { suporization }+\Delta S_{\text {eating }} \\
& \text { Divaporization }=\int \frac{d Q}{T}=\frac{1}{T_{\text {moving }}} \int Q=\frac{Q_{\text {vaporiantion }}}{T_{\text {roviting }}}=\frac{m_{w} L_{v}}{T_{\text {porting }}} \\
& =\frac{2260 \mathrm{~J}}{373 \mathrm{~K}} \quad[4 \text { points] } \\
& \Delta S_{\text {hang }}=\int \frac{d Q}{T}=\int \frac{m c d T}{T}=m c \ln \left(\frac{T_{t}}{T_{i}}\right) \\
& =(1 \mathrm{~g})\left(.48 \frac{\mathrm{cai}}{\mathrm{gt}}\right)(4.186 \mathrm{5} / \mathrm{k}) \ln \left(\frac{423}{373}\right) \quad \text { [6 point } \\
& \Delta S=6.31
\end{aligned}
$$

6. Several different right answers:

- The steam exchanges heat at constant T while the balloon exchanges heat at varying T, so althout $\left|Q_{\text {steam }}\right|=\left|Q_{\text {balloon }}\right|, \quad\left|\Delta s_{\text {shan }}\right|\left|\Delta S_{\text {balloon }}\right|$
- The $\mathrm{H}_{2} \mathrm{O}$ underwent a change in phase, which implies a change froman ordered to disordered state.
- The process is irreversible and no heat is exchanged from the universe. So

$$
\Delta s \geqslant 0
$$

etc.

Problem 6

Initial temperature
T_{i}

mass m radius r

$$
\begin{aligned}
r & =2.76 \mathrm{~cm} \\
m & =1.00 \mathrm{~kg} \\
\varepsilon & =0.065 \\
T_{i} & =300 \mathrm{~K} \\
T_{f} & =2.73 \mathrm{~K}
\end{aligned}
$$

Atomic weight $A=208$
$d=6$ degrees of freecion

- How long till sphere cocks from T_{i} to if?

Sphere is losing energy due to blackbody radiation at rate $P=\varepsilon \sigma A_{s}\left(T_{4}^{4}(t)-T_{\text {backgrand }}^{4}\right)$, but we can ignore Tbackground. (where As is the surface ocrea of the sphere) We also have $-P=\frac{d Q}{d t}$, where the minus sign accounts for the fact that $\frac{d Q}{d t}$ has t be negative.
If we know the heat capacity C, we could barite dix $=C d T$ to give:

$$
\frac{d Q}{d t}=C \frac{d T}{d t}=-\varepsilon \sigma A_{s} T^{4}(t)
$$

We can save this by multiplying by $d t$ and dividing by $T^{4}(t)$:

$$
\begin{aligned}
& C \frac{d T}{T^{4}}=-\varepsilon \sigma A_{s} d t \\
& C \int_{T_{i}}^{T_{f^{4}}} \frac{d T}{T^{4}}=-\varepsilon \sigma A_{s} \int_{0}^{t} d t \\
& -\frac{C}{3}\left(\left(\frac{1}{T_{f}}\right)^{3}-\left(\frac{1}{T_{i}}\right)^{3}\right)=-\varepsilon \sigma A_{s} t \\
& t=\frac{C}{3 \varepsilon \sigma A_{s}}\left(\frac{1}{T_{f}^{3}}-\frac{1}{T_{i}^{3}}\right)
\end{aligned}
$$

To find C, we use the definition $C=\frac{d Q}{d T}$. The first law of thermo hods, So we have $d Q=d E_{\text {int }}+d W$. Since the sphere does no appreciable work on its surroundings, we have $d W=0$, so $d Q=d E_{\text {int }}$. For a solid with 6 degrees of freedom, we can use the equipartition theorem to write $d E_{\text {int }}=\frac{6}{2} N k_{B} d T=3 N k_{B} d T$

This gives us: $C=\frac{d Q}{d T}=\frac{d E_{\text {nt }}}{d T}=\frac{3 N k_{B} d T}{d T}=3 N k_{B}=C$
We need N, which we can get as $N=\frac{M}{M_{\text {atom }}}$, where matom $=A \cdot l u$ and $1 u=1.66 \times 10^{-27} \mathrm{~kg}$. We finally get:

$$
\begin{aligned}
& t=\frac{3\left(\frac{m}{A \cdot 1.66 \times 10^{-27}}\right) \mathrm{KB}}{3 \varepsilon \sigma\left(4 \pi r^{2}\right)}\left[\frac{1}{T_{f}^{3}}-\frac{1}{T_{i}^{3}}\right] \\
& t=\frac{3 \times\left(\frac{1.00 \mathrm{~kg}}{208.1 .66 \times 10^{-27} \mathrm{~kg}}\right) \times 1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}}{3 \times 0.065 \times 5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4} \times 4 \pi \times\left[2.76 \times 10^{-2} \mathrm{~m}\right]^{2}}\left[\frac{1}{(2.733 \mathrm{~K})^{3}}-\frac{1}{(300 \mathrm{~K}}\right. \\
& t=5.57 \times 10^{10} \mathrm{~s}
\end{aligned}
$$

Problem 6 Rubrik: (20 points total)

$$
\begin{cases}\left\{\begin{array}{ll}
P=\varepsilon \sigma(\text { Area }) T^{4} & 3 \text { pts. } \\
P=\frac{d Q}{d t} & 2 \text { pts. } \\
\frac{d Q}{d t}=C \frac{d T}{d t} & 2 \text { pts. } \\
C \frac{d T}{d t}=-\varepsilon \sigma(\text { Area }) T^{4} & \text { qpts. } \\
t & =\frac{C}{3 \varepsilon \sigma(A r e a)}\left(\frac{1}{T_{f}^{3}}-\frac{1}{T_{i}^{3}}\right) \\
C=\frac{d Q}{d T}=\frac{6}{2} N k_{B}=3 N k_{B} & \text { pts. } \\
N=\frac{m}{m_{a t o m}} \\
m_{\text {atom }}=A \times 1.66 \times 10^{-27} \mathrm{~kg}
\end{array}\right\} \text { Blat 2pts. }\end{cases}
$$

Correct numerical answer: 2 pts.

$$
=\frac{+}{2}
$$

Common problems:
$\frac{\Delta \dot{Q}}{\Delta t}=\varepsilon \sigma A T_{\text {init. . }}^{4}$, not a fen. of time
$\frac{\Delta Q}{\Delta t}=\operatorname{cr} A\left(T_{\text {init }}^{4}-T_{\text {final }}^{4}\right)$ just plain wrong.
used C_{p} instead of C_{v}

