Math 54 Midterm 2 Solution

(1) One version: FFTTTTFF FTFTFTFT TTTTFFFF

Another version: TFTFTFTF FFFTTTFT FTFTFTFT
Yet another version: TTFFFFTT TTTFFFTF FFFFTTTT
(2) (b) The eigenvalues of A are 6 and 1. A 6-eigenvector is $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. A 1-eigenvector is $\left[\begin{array}{c}2 \\ -1\end{array}\right]$. So

$$
S=\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right], \quad D=\left[\begin{array}{ll}
6 & 0 \\
0 & 1
\end{array}\right]
$$

(c) The sequence of matrices $\lambda^{-n} D^{n}$ has a nonzero limit if and only if both of the sequences of diagonal entries $\lambda^{-n} 6^{n}$ and λ^{-n} have a limit and at least one of these limits is nonzero. The only value of λ for which this happens is $\lambda=6$: if $\lambda<0$ or if $0<\lambda<1$, neither converges; if $1 \leq \lambda<6, \lambda^{-n} 6^{n}$ does not converge; and if $\lambda>6$, they both converge to zero. Whereas if $\lambda=6, \lambda^{-n} 6^{n}=1$ for all n, and $\lambda^{-n} 1^{n} \rightarrow 0$, so $\lambda^{-n} D^{n} \rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Since $A=S D S^{-1}$, $A^{n}=S D^{n} S^{-1}$, so $\lambda^{-n} A^{n}$ converges if and only if $\lambda^{-n} D^{n}$ converges. The limit in this case is

$$
S\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] S^{-1}=\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / 5 & 2 / 5 \\
2 / 5 & -1 / 5
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 / 5 & 2 / 5 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 / 5 & 2 / 5 \\
2 / 5 & 4 / 5
\end{array}\right]
$$

(3) (a) Let $\mathbf{v}_{1}=\left[\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$, and let W denote the plane they span in \mathbb{R}^{4}. Construct an orthogonal basis for W by setting $\mathbf{u}_{1}=\mathbf{v}_{1}$ and $\mathbf{u}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]-\frac{6}{9}\left[\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{c}2 / 3 \\ -1 / 3 \\ 2 / 3\end{array}\right]$. Now normalize \mathbf{u}_{1} and \mathbf{u}_{2} to give the orthonormal basis consisting of $\mathbf{q}_{1}=\left[\begin{array}{c}-1 / 3 \\ 2 / 3 \\ 2 / 3\end{array}\right]$ and $\mathbf{q}_{2}=\mathbf{u}_{2}=\left[\begin{array}{c}2 / 3 \\ -1 / 3 \\ 2 / 3\end{array}\right]\left(\mathbf{u}_{2}\right.$ is already a unit vector $)$.
(b) A vector \mathbf{q}_{3} orthogonal to both \mathbf{q}_{1} and \mathbf{q}_{3} must lie in the orthogonal complement of their span, which is one dimensional; in a one-dimensional space, there are only two unit vectors, so there will be two choices for \mathbf{q}_{3}. The orthogonal complement to the space spanned by \mathbf{q}_{1} and \mathbf{q}_{2} is the nullspace of the matrix having \mathbf{q}_{1} and \mathbf{q}_{2} as rows:

$$
\text { Null }\left[\begin{array}{ccc}
-1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & 2 / 3
\end{array}\right] \stackrel{\text { row ops }}{=} \text { Null }\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right]
$$

This null space is one-dimensional, spanned by $\left[\begin{array}{c}-2 \\ -2 \\ 1\end{array}\right]$. This vector is orthogonal to \mathbf{q}_{1} and \mathbf{q}_{2}, and has length 3. So the two possibilites for \mathbf{q}_{3} are $\pm\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ -1 / 3\end{array}\right]$. Either choice of \mathbf{q}_{3} gives a matrix $Q=\left[\begin{array}{lll}\mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{3}\end{array}\right]$ which is orthogonal.
Fix the choice with $\mathbf{q}_{3}=\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ -1 / 3\end{array}\right]$.
(c) The matrix Q is

$$
Q=\left[\begin{array}{ccc}
-1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & -1 / 3
\end{array}\right]
$$

Since Q is symmetric, its eigenvalues are real, and since it's orthogonal, its eigenvalues have length one, so the eigenvalues of Q are either ± 1. First look at $\lambda=1$:

$$
Q-\lambda I=\left[\begin{array}{ccc}
-4 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & -4 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & -4 / 3
\end{array}\right] \stackrel{\text { row ops }}{\sim}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

So the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ spans the 1-eigenspace. On the other hand, when $\lambda=-1$, we get

$$
Q-\lambda I=\left[\begin{array}{lll}
2 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & 2 / 3
\end{array}\right] \stackrel{\text { row ops }}{\sim}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so the -1-eigenspace is spanned by $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
If we chose instead the other possibility for \mathbf{q}_{3}, then we would have

$$
Q=\left[\begin{array}{ccc}
-1 / 3 & 2 / 3 & -2 / 3 \\
2 / 3 & -1 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right]
$$

The eigenvalues of this matrix are -1 and $\frac{1}{3}(1 \pm 2 \sqrt{2} i)$. Choosing $\lambda=-1$, we compute the eigenspace as the nullspace of

$$
\left[\begin{array}{ccc}
2 / 3 & 2 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 4 / 3
\end{array}\right] \stackrel{\text { row ops }}{\sim}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

This nullspace is spanned by $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$, so this is an eigenvector for $\lambda=-1$.
(4) We must solve the system of equations $y_{i}=a x_{i}^{3}+b x_{i}^{2}$, for $i=1,2,3,4$. This corresponds to the linear system $A \mathbf{x}=\mathbf{y}$, where

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
0 & 0 \\
1 & 1 \\
8 & 4
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
a \\
b
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
0 \\
2 \\
4
\end{array}\right]
$$

This system is inconsistent, but the least squares solution $\widehat{\mathbf{x}}$ can be obtained by solving the normal equation

$$
A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{y}
$$

Here $A^{T} A=\left[\begin{array}{ll}66 & 32 \\ 32 & 18\end{array}\right]$ and $A^{T} \mathbf{y}=\left[\begin{array}{l}33 \\ 19\end{array}\right]$, so the augmented matrix for the normal equation is

$$
\left[\begin{array}{lll}
66 & 32 & 33 \\
32 & 18 & 19
\end{array}\right] \stackrel{\text { row ops }}{\sim}\left[\begin{array}{ccc}
1 & 0 & -7 / 82 \\
0 & 1 & 99 / 82
\end{array}\right]
$$

So the desired equation is

$$
y=-\frac{7}{82} x^{3}+\frac{99}{82} x^{2}
$$

