
Math 54 Final Exam Solution

(1) Multiple Choice
(1) b (2) d (3) d (4) b (5) a (6) d (7) d (8) XXX (9) b (10) c
(11) d (12) b (13) c (14) c (15) b (16) b (17) b (18) b (19) b (20) b

(2) (a) Describe Lagrange’s method of “Variation of parameters’ for solving the second-order inhomogeneous ODE

x′′(t) + a1(t)x′(t) + a0(t)x(t) = g(t)

(b) Solve the ODE 1
2x
′′ + 2x = tan(2t), −π4 < x < π

4 .

Solution: First solve the homogeneous equation 1
2x
′′+2x = 0, whose characteristic equation 1

2r
2 +2 = 0 has roots

r = ±2i, giving us the two independent (real) solutions

x1(t) = cos 2t, x2(t) = sin 2t

We now need one particular solution xp to the original equation. This can be done by variation of parameters,
setting xp = v1x1 + v2x2, where v1 and v2 are to be determined. They are found by solving the equations

x1v
′
1 + x2v

′
2 = 0

x′1v
′
1 + x′2v

′
2 = 2 tan(2t),

where the factor of 2 on tan 2t is a result of the coefficient 1
2 on x′′. This is equivalent to the matrix equation[

cos 2t sin 2t
−2 sin 2t 2 cos 2t

] [
v′1
v′2

]
=

[
0

2 tan 2t

]
.

The (Wronskian) matrix on the left is invertible since x1 and x2 are independent, so we can invert it and compute[
v′1
v′2

]
=

[
cos 2t sin 2t
−2 sin 2t 2 cos 2t

]−1 [
0

2 tan 2t

]
=

[
cos 2t − 1

2 sin 2t
sin 2t 1

2 cos 2t

] [
0

2 tan 2t

]
=

[
− sin 2t tan 2t

sin 2t

]
To find v1 we must find an antiderivative of − sin 2t tan 2t, as follows:

−
∫

sin 2t tan 2t dt = −
∫

sin2 2t

cos 2t
dt = −

∫
1− cos2 2t

cos 2t
dt

= −
∫

1

cos 2t
dt+

∫
cos 2tdt

= −1

2
log

sin t+ cos t

sin t− cos t
+

1

2
sin 2t

Thus v1 = − 1
2 log sin t+cos t

sin t−cos t + 1
2 sin 2t. Also, v2 =

∫
sin 2tdt = − 1

2 cos 2t. Putting this all together, we find that

xp = cos 2t

(
−1

2
log

sin t+ cos t

sin t− cos t
+

1

2
sin 2t

)
+ sin 2t

(
−1

2
cos 2t

)
= −1

2
cos 2t log

sin t+ cos t

sin t− cos t
,

so the general solution is

x(t) = c1 cos 2t+ c2 sin 2t− 1

2
cos 2t log

sin t+ cos t

sin t− cos t
(3) (a) Find the Fourier cosine series for the function f(x) = sinx on the interval [0, π].

(b) Specialize your Fourier series to x = π/2 to get an interesting identity.
Solution:
(a) The coefficients an (n ≥ 0) for the cosine series are given by the formulae

an =
2

π

∫ π

0

sinx cosnx dx

First notice a0 = 2
π

∫ π
0

sinxdx = 4
π . To compute the integral for n > 0, recall that sin(A+B) = sinA cosB+

sinB cosA and sin(A−B) = sinA cosB − sinB cosA. Subtracting these formulae gives the relation sin(A+
B)− sin(A−B) = 2 sinB cosA. We use this in the above integral, taking B = x, A = nx. This gives

an =
2

π

∫ π

0

1

2
(sin(n+ 1)x− sin(n− 1)x) dx

When n = 1, the integrand is sin 2x − sin 0 = sin 2x, so a1 = 2
π

∫ π
0

1
2 sin 2xdx = 2

π
1
2

[
− 1

2 cos 2x
]π
0

= 0. For
n ≥ 2, we calculate

1
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an =
2

π

∫ π

0

1

2
(sin(n+ 1)x− sin(n− 1)x) dx

=
1

π

[
− 1

n+ 1
cos(n+ 1)x+

1

n− 1
cos(n− 1)x

]π
0

(this makes sense since n 6= 1)

=
1

π

[
− 1

n+ 1
(−1)n+1 +

1

n− 1
(−1)n−1 +

1

n+ 1
− 1

n− 1

]
=

1

π

[
(−1)n

(
1

n+ 1
− 1

n− 1

)
+

1

n+ 1
− 1

n− 1

]
=

1

π
((−1)n + 1)

(
1

n+ 1
− 1

n− 1

)
=

1

π
((−1)n + 1)

(
−2

n2 − 1

)
=

{
4

π(1−n2) n even

0 n odd

Thus the fourier cosine series for f is

sinx ∼ 2

π
+

∞∑
n=2

1

π
((−1)n + 1)

(
4

1− n2

)
cosnx =

2

π
+

∞∑
k=1

4

π(1− 4k2)
cos 2kx.

(b) At x = π/2, we get after multiplying through by π, π = 2 +
∑∞
k=1

(−1)k4
1−4k2 .

(4) (a) Write the general form of d’Alembert’s solution to the wave equation
∂2u

∂t2
=
∂2u

∂x2
for a function u(x, t) with

x, t ∈ R. Briefly explain how the ingredients of the solution can be found from the initial conditions.
(b) By d’Alembert’s method or otherwise, solve the equation explicitly with 2π-periodic functions of x, subject

to the intial conditions u(x, 0) = sin2 x and ∂u
∂t (x, 0) = cosx.

Solution:
(a)
(b) Using d’Alembert’s formula

u(x, t) =
1

2

(
sin2(x+ t) + sin2(x− t)

)
+

1

2
(sin(x+ t)− sin(x− t))

=
1

2

(
sin2(x+ t) + sin2(x− t) + 2 sin t cosx

)
= (sinx cos t)2 + (sin t cosx)2 + sin t cosx

(5) (a) Write the general solution of the vector-valued ODE

dx

dt
=

[
1.4 1.6
−.8 −.2

]
x.

(b) Draw a “phase diagram” of this ODE, roughly sketching a few trajectories.

(c) Which axis is the first to be crossed, if we start with the initial value x(0) =

[
2
1

]
?

Solution:
(a) Let A denote the matrix appearing in the equation. The solutions to a first-order vector ODE have the form

eλtx, where x is an eigenvector for A with eigenvalue λ. The eigenvalues of A are λ = 3
5 ±

4
5 i. An eigenvector

for λ = 3
5 + 4

5 i is v =

[
1 + i
−1

]
. This breaks into real and imaginary parts

[
1
−1

]
and

[
1
0

]
, yielding two

real independent solutions

x1(t) = e
3
5 t

(
cos

4

5
t

[
1
−1

]
− sin

4

5
t

[
1
0

])
and x2(t) = e

3
5 t

(
sin

4

5
t

[
1
−1

]
+ cos

4

5
t

[
1
0

])
Then the general solution has the form x(t) = c1x1(t) + c2x2(t), where c1, c2 ∈ R are arbitrary.

(b)

(c) The condition x(0) =

[
2
1

]
allows us to solve for c1 and c2. Notice that at t = 0, the exponentials are all 1,

and the terms involving sin 4
5 t vanish, so x(0) = c1

[
1
−1

]
+ c2

[
1
0

]
, and we see by inspection or by writing

out a system of two equations in the unknowns c1, c2 that c1 = −1 and c2 = 3. So the desired solution is
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x(t) = −x1(t) + 3x2(t), where x1 and x2 are as above. Simplifying this yields

x(t) = e
3
5 t

(
cos

4

5
t

[
2
1

]
+ sin

4

5
t

[
4
−3

])
The trajectory of this solution is an “outward” spiral which begins (t = 0) at

[
2
1

]
and moves initially

toward the vector

[
4
−3

]
. Thus the first axis to be crossed is the xaxis.


