Math 54 Final Exam Solution

(1) Multiple Choice
(1) b (2) d (3) d (4) b (5) a (6) d (7) d (8) XXX (9) b (10) c
(11) d (12) b (13) c (14) c (15) b (16) b (17) b (18) b (19) b (20) b
(2) (a) Describe Lagrange's method of "Variation of parameters' for solving the second-order inhomogeneous ODE

$$
x^{\prime \prime}(t)+a_{1}(t) x^{\prime}(t)+a_{0}(t) x(t)=g(t)
$$

(b) Solve the ODE $\frac{1}{2} x^{\prime \prime}+2 x=\tan (2 t),-\frac{\pi}{4}<x<\frac{\pi}{4}$.

Solution: First solve the homogeneous equation $\frac{1}{2} x^{\prime \prime}+2 x=0$, whose characteristic equation $\frac{1}{2} r^{2}+2=0$ has roots $r= \pm 2 i$, giving us the two independent (real) solutions

$$
x_{1}(t)=\cos 2 t, \quad x_{2}(t)=\sin 2 t
$$

We now need one particular solution x_{p} to the original equation. This can be done by variation of parameters, setting $x_{p}=v_{1} x_{1}+v_{2} x_{2}$, where v_{1} and v_{2} are to be determined. They are found by solving the equations

$$
\begin{aligned}
& x_{1} v_{1}^{\prime}+x_{2} v_{2}^{\prime}=0 \\
& x_{1}^{\prime} v_{1}^{\prime}+x_{2}^{\prime} v_{2}^{\prime}=2 \tan (2 t)
\end{aligned}
$$

where the factor of 2 on $\tan 2 t$ is a result of the coefficient $\frac{1}{2}$ on $x^{\prime \prime}$. This is equivalent to the matrix equation

$$
\left[\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-2 \sin 2 t & 2 \cos 2 t
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \tan 2 t
\end{array}\right] .
$$

The (Wronskian) matrix on the left is invertible since x_{1} and x_{2} are independent, so we can invert it and compute
$\left[\begin{array}{c}v_{1}^{\prime} \\ v_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos 2 t & \sin 2 t \\ -2 \sin 2 t & 2 \cos 2 t\end{array}\right]^{-1}\left[\begin{array}{c}0 \\ 2 \tan 2 t\end{array}\right]=\left[\begin{array}{cc}\cos 2 t & -\frac{1}{2} \sin 2 t \\ \sin 2 t & \frac{1}{2} \cos 2 t\end{array}\right]\left[\begin{array}{c}0 \\ 2 \tan 2 t\end{array}\right]=\left[\begin{array}{c}-\sin 2 t \tan 2 t \\ \sin 2 t\end{array}\right]$
To find v_{1} we must find an antiderivative of $-\sin 2 t \tan 2 t$, as follows:

$$
\begin{aligned}
-\int \sin 2 t \tan 2 t d t & =-\int \frac{\sin ^{2} 2 t}{\cos 2 t} d t=-\int \frac{1-\cos ^{2} 2 t}{\cos 2 t} d t \\
& =-\int \frac{1}{\cos 2 t} d t+\int \cos 2 t d t \\
& =-\frac{1}{2} \log \frac{\sin t+\cos t}{\sin t-\cos t}+\frac{1}{2} \sin 2 t
\end{aligned}
$$

Thus $v_{1}=-\frac{1}{2} \log \frac{\sin t+\cos t}{\sin t-\cos t}+\frac{1}{2} \sin 2 t$. Also, $v_{2}=\int \sin 2 t d t=-\frac{1}{2} \cos 2 t$. Putting this all together, we find that

$$
x_{p}=\cos 2 t\left(-\frac{1}{2} \log \frac{\sin t+\cos t}{\sin t-\cos t}+\frac{1}{2} \sin 2 t\right)+\sin 2 t\left(-\frac{1}{2} \cos 2 t\right)=-\frac{1}{2} \cos 2 t \log \frac{\sin t+\cos t}{\sin t-\cos t}
$$

so the general solution is

$$
x(t)=c_{1} \cos 2 t+c_{2} \sin 2 t-\frac{1}{2} \cos 2 t \log \frac{\sin t+\cos t}{\sin t-\cos t}
$$

(3) (a) Find the Fourier cosine series for the function $f(x)=\sin x$ on the interval $[0, \pi]$.
(b) Specialize your Fourier series to $x=\pi / 2$ to get an interesting identity.

Solution:
(a) The coefficients $a_{n}(n \geq 0)$ for the cosine series are given by the formulae

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos n x d x
$$

First notice $a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \sin x d x=\frac{4}{\pi}$. To compute the integral for $n>0$, recall that $\sin (A+B)=\sin A \cos B+$ $\sin B \cos A$ and $\sin (A-B)=\sin A \cos B-\sin B \cos A$. Subtracting these formulae gives the relation $\sin (A+$ $B)-\sin (A-B)=2 \sin B \cos A$. We use this in the above integral, taking $B=x, A=n x$. This gives

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2}(\sin (n+1) x-\sin (n-1) x) d x
$$

When $n=1$, the integrand is $\sin 2 x-\sin 0=\sin 2 x$, so $a_{1}=\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2} \sin 2 x d x=\frac{2}{\pi} \frac{1}{2}\left[-\frac{1}{2} \cos 2 x\right]_{0}^{\pi}=0$. For $n \geq 2$, we calculate

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2}(\sin (n+1) x-\sin (n-1) x) d x \\
& =\frac{1}{\pi}\left[-\frac{1}{n+1} \cos (n+1) x+\frac{1}{n-1} \cos (n-1) x\right]_{0}^{\pi} \quad(\text { this makes sense since } n \neq 1) \\
& =\frac{1}{\pi}\left[-\frac{1}{n+1}(-1)^{n+1}+\frac{1}{n-1}(-1)^{n-1}+\frac{1}{n+1}-\frac{1}{n-1}\right] \\
& =\frac{1}{\pi}\left[(-1)^{n}\left(\frac{1}{n+1}-\frac{1}{n-1}\right)+\frac{1}{n+1}-\frac{1}{n-1}\right] \\
& =\frac{1}{\pi}\left((-1)^{n}+1\right)\left(\frac{1}{n+1}-\frac{1}{n-1}\right) \\
& =\frac{1}{\pi}\left((-1)^{n}+1\right)\left(\frac{-2}{n^{2}-1}\right)= \begin{cases}\frac{4}{\pi\left(1-n^{2}\right)} & n \text { even } \\
0 & n \text { odd }\end{cases}
\end{aligned}
$$

Thus the fourier cosine series for f is

$$
\sin x \sim \frac{2}{\pi}+\sum_{n=2}^{\infty} \frac{1}{\pi}\left((-1)^{n}+1\right)\left(\frac{4}{1-n^{2}}\right) \cos n x=\frac{2}{\pi}+\sum_{k=1}^{\infty} \frac{4}{\pi\left(1-4 k^{2}\right)} \cos 2 k x .
$$

(b) At $x=\pi / 2$, we get after multiplying through by $\pi, \pi=2+\sum_{k=1}^{\infty} \frac{(-1)^{k} 4}{1-4 k^{2}}$.
(4) (a) Write the general form of d'Alembert's solution to the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$ for a function $u(x, t)$ with $x, t \in \mathbb{R}$. Briefly explain how the ingredients of the solution can be found from the initial conditions.
(b) By d'Alembert's method or otherwise, solve the equation explicitly with 2π-periodic functions of x, subject to the intial conditions $u(x, 0)=\sin ^{2} x$ and $\frac{\partial u}{\partial t}(x, 0)=\cos x$.
Solution:
(a)
(b) Using d'Alembert's formula

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left(\sin ^{2}(x+t)+\sin ^{2}(x-t)\right)+\frac{1}{2}(\sin (x+t)-\sin (x-t)) \\
& =\frac{1}{2}\left(\sin ^{2}(x+t)+\sin ^{2}(x-t)+2 \sin t \cos x\right) \\
& =(\sin x \cos t)^{2}+(\sin t \cos x)^{2}+\sin t \cos x
\end{aligned}
$$

(5) (a) Write the general solution of the vector-valued ODE

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{cc}
1.4 & 1.6 \\
-.8 & -.2
\end{array}\right] \mathbf{x}
$$

(b) Draw a "phase diagram" of this ODE, roughly sketching a few trajectories.
(c) Which axis is the first to be crossed, if we start with the initial value $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$?

Solution:
(a) Let A denote the matrix appearing in the equation. The solutions to a first-order vector ODE have the form $e^{\lambda t} \mathbf{x}$, where \mathbf{x} is an eigenvector for A with eigenvalue λ. The eigenvalues of A are $\lambda=\frac{3}{5} \pm \frac{4}{5} i$. An eigenvector for $\lambda=\frac{3}{5}+\frac{4}{5} i$ is $\mathbf{v}=\left[\begin{array}{c}1+i \\ -1\end{array}\right]$. This breaks into real and imaginary parts $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, yielding two real independent solutions

$$
\mathbf{x}_{1}(t)=e^{\frac{3}{5} t}\left(\cos \frac{4}{5} t\left[\begin{array}{c}
1 \\
-1
\end{array}\right]-\sin \frac{4}{5} t\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\frac{3}{5} t}\left(\sin \frac{4}{5} t\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\cos \frac{4}{5} t\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

Then the general solution has the form $\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)$, where $c_{1}, c_{2} \in \mathbb{R}$ are arbitrary.
(b)
(c) The condition $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ allows us to solve for c_{1} and c_{2}. Notice that at $t=0$, the exponentials are all 1 , and the terms involving $\sin \frac{4}{5} t$ vanish, so $\mathbf{x}(0)=c_{1}\left[\begin{array}{c}1 \\ -1\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and we see by inspection or by writing out a system of two equations in the unknowns c_{1}, c_{2} that $c_{1}=-1$ and $c_{2}=3$. So the desired solution is
$\mathbf{x}(t)=-\mathbf{x}_{1}(t)+3 \mathbf{x}_{2}(t)$, where \mathbf{x}_{1} and \mathbf{x}_{2} are as above. Simplifying this yields

$$
\mathbf{x}(t)=e^{\frac{3}{5} t}\left(\cos \frac{4}{5} t\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\sin \frac{4}{5} t\left[\begin{array}{c}
4 \\
-3
\end{array}\right]\right)
$$

The trajectory of this solution is an "outward" spiral which begins $(t=0)$ at $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and moves initially toward the vector $\left[\begin{array}{c}4 \\ -3\end{array}\right]$. Thus the first axis to be crossed is the xaxis.

