
Mathematics 1A, Fall 2009 — M. Christ — Final Examination Solutions

There were two versions of the exam. They were very similar, so solutions are given here
for only one version.
(1) Calculate the following. (1a) The equation of the line tangent to f(x) = x + ex at
x = 2. Solution. y = (2 + e2) + e2(x− 2). �
(1b) d

dx

√
3 + ln(ln(x)). Solution. 1

2(3 + ln(ln(x)))−1/2 · 1
ln(x) ·

1
x . �

(1c) limx→π/2
cos(x)
x−π/2 Solution. = limx→π/2

− sin(x)
1 = − sin(π/2) = −1 by L’Hôpital’s

rule. �
(1d) d

dxx
cos(x). (Here x > 0.)

Solution. = d
dxe

cos(x) ln(x) = (− sin(x) ln(x) + cos(x)x−1)ecos(x) ln(x) = (− sin(x) ln(x) +
cos(x)x−1)xcos(x). �
(1e)

∫
d
dx

√
| sin(x) + cos(x)| dx. Solution.

√
| sin(x) + cos(x)|+C where C is an arbitrary

constant. �
(1f) d

dx

∫ sin(2x)
0 arcsin(t) dt. Solution. = arcsin(sin(2x)) · 2 cos(2x).

If 2x is in the range [−π/2, π/2], then this can be simplified, since then arcsin(sin(2x)) =
2x. If 2x is not in this range then arcsin(sin(2x)) is the unique number t in this range
which satisfies sin(t) = sin(2x). �
(1h)

∫
sin(x) cos(x) dx Solution. Substitute u = sin(x). Then du = cos(u) du, and the

integral is
∫
u du = 1

2u
2 + C = 1

2 sin2(x) + C, where C is an arbitrary constant. �

(2j)
∫ 1
0 (1− x2)−1/2 dx Solution. An antiderivative for (1− x2)−1/2 is arcsin(x), so by the

FTC part II, the integral equals arcsin(1)− arcsin(0) = π
2 − 0 = π

2 . �
(2k)

∑4
i=1 i

2 cos(πi) Solution. = 12 cos(π) + 22 cos(2π) + 32 cos(3π) + 42 cos(4π) = −1 +
4− 9 + 16 = 10. �
(2l)

∫ 2
−2 x ln(1+x4) dx Solution. We cannot easily evaluate the indefinite integral

∫
x ln(1+

x4) dx using techniques from this course. However, the integrand x ln(1 + x4) is an odd
function, and the integral is from −a to a where a = 2, so the definite integral equals 0. �
(2m)

∫
(1 − x2)−3/2 dx (You need not simplify your answer.) Solution. Substitute x =

sin(θ) where θ ∈ (−π/2, π/2). Then dx = cos(θ) dθ, and cos(θ) =
√

cos2(θ) since cos(θ) ≥
0. Therefore the integral becomes

∫
(cos(θ))−3 cos(θ) dθ =

∫
1

cos2(θ)
dθ =

∫
sec2(θ) dθ =

tan(θ) + C = tan(arcsin(x)) + C where C is an arbitrary constant.
This can be simplified since sin(arcsin(x))

cos(arcsin(x)) = x√
1−x2

, but full credit was given for the above
answer. �
(2n) limx→∞

(
(x + x1/3)2/3 − x2/3

)
Solution. This is most easily done using L’Hôpital’s

rule.

= lim
x→∞

x2/3
(

(1 + x−2/3)2/3 − 1
)

= lim
x→∞

(1 + x−2/3)2/3 − 1
x−2/3

= lim
t→0+

(1 + t2/3)2/3 − 1
t2/3

= lim
t→0+

2
3(1 + t2/3)−1/3 · 2

3 t
−1/3

2
3 t
−1/3

= lim
t→0+

2
3

(1 + t2/3)−1/3 =
2
3
· (1 + 0)−1/3 =

2
3
. �

1



2

(2o) Express an approximation to
∫ 3
1 e

x2
dx as a right endpoint Riemann sum with n = 3.

Your answer need not be simplified; it could be expressed as a sum of several numbers.
Solution. The endpoints are a = 1 and b = 3, so b−a

n = 2
3 . Thus x1 = 1 + 2

3 = 5
3 ,

x2 = x1 + 2
3 = 7

3 , x3 = 3. The Riemann sum is

b− a
n

3∑
i=1

ex
2
i =

2
3
(
e25/9 + e49/9 + e9

)
.

�
(2p) limn→∞

∑n
i=1

n
n2+i2

. (Either use a method taught in this course, or justify your steps
in full detail.) Solution.

lim
n→∞

n∑
i=1

n

n2 + i2
= lim

n→∞

n∑
i=1

n

n2 + i2
= lim

n→∞

1
n

n∑
i=1

n2

n2 + i2
= lim

n→∞

1
n

n∑
i=1

1
1 + (i/n)2

.

Let a = 0, b = 1, and thus xi = a + i b−an = i/n. Thus we have = limn→∞
b−a
n

∑n
i=1

1
1+x2

i
.

This is a limit of Riemann sums for∫ 1

0
(1 + x2)−1 dx = arctan(1)− arctan(0) =

π

4
− 0 =

π

4
.

�
(2q) Use Newton’s method with initial approximation x1 = 10 and one step to approximate
the cube root of 996. Solution. To solve x3 = 996 is the same as solving f(x) = 0 where
f(x) = x3 − 996.

Taking x1 = 10, the next approximation given by Newton’s method is

x2 = x1 −
f(x1)
f ′(x1)

= 10− 103 − 996
3 · 102

= 10− 4
300

= 10− 1
75
.

(Notice that this is slightly less than our initial guess, which makes sense since 103 = 1000
and 996 is slightly less than 1000.) �
Comment. The most common error was to apply Newton’s formula using the wrong
equation for f . The common mistakes were f(x) = x1/3, and f(x) = x3. Newton’s formula
is used to approximate a solution to the equation f(x) = 0 . In this problem we were
solving x3 = 996, that is, x3 − 996 = 0. So f(x) = x3 − 996. See other examples in text
and lecture. �
(3) A right circular cone has height h and has a circular base of radius r. Its volume is
1
3πr

2h. Suppose that r2 +h2 = 1. For what value of h is the volume of the cone maximized?
What is the maximum volume?
Solution. Express V as a function of h alone: V (h) = π

3h(1−h2). Then dV
dh = π

3 (1−h2)−
h · 2h) = π

3 (1 − 3h2). This equals zero if and only if h = 1/
√

3. Note that 1/
√

3 is in the
allowed range [0, 1] of values of h.
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We also need to check the endpoints: V (0) = 0 and V (1) = 0. V (1/
√

3) = π
3 ·

1√
3
·(1− 1

3) =
2π

9
√

3
. This is greater than the value of V at the endpoints, so the maximum value is 2π

9
√

3
,

and it is attained when (and only when) h = 1√
3
. �

Comment. A very straightforward maximization problem. My intent was to give away
easy points.
(4) Sketch a graph of the function f(x) = 4 + xe−1/2x. Indicate all horizontal and vertical
asymptotes (but you need not indicate slant asymptotes), intervals on which f is increasing
and decreasing, local maxima and minima, inflection points, and intervals on which the
graph is concave up or down. It is not possible to calculate intercepts exactly. Instead,
determine exactly how many intercepts there are, and indicate roughly where they are
located. You may use the formulas f ′(x) = (1 + 1

2x
−1)e−1/2x and f ′′(x) = 1

4x
−3e−1/2x.

Solution. (Sketch not included here.) (Remember that e−1/2x means e−1/(2x).)
The domain of f is the set of all nonzero real numbers. There is a vertical asymptote at

x = 0. f(x)→ 4 as x→ 0 from above, and f(x)→ −∞ as x→ 0 from below. f(x)→ −∞
as x→ −∞ and f(x)→∞ as x→∞.
f ′(x) > 0 for all x > 0, and for all x < −1

2 . f ′(x) < 0 for all x in (−1
2 , 0). So f is

increasing on (0,∞) and on (−∞,−1
2), and decreasing on (−1

2 , 0). The only critical point
is at x = −1

2 , and this is a local maximum. f(−1
2) = 4− 1

2e
−1/−1 = 4− 1

2e > 0.
f(x) > 0 for all x > 0. By the intermediate value theorem, f(x) = 0 for at least one x in

(−∞,−1
2), and f(x) = 0 for at least one x in (−1

2 , 0). Because f is increasing on (−∞,−1
2)

and decreasing on (−1
2 , 0), there can be only one zero in each of those two intervals. So

there are exactly two x axis intercepts.
The graph is concave up for x > 0 and concave down for x < 0; there are no inflection

points. �
(5) Newton’s law of cooling says: The rate of cooling of a body is proportional to the
difference between that body’s temperature, and the temperature of its environment. In a
cafe where the ambient room temperature is a steady 70 degrees, a cup of coffee is served at
190 degrees. (All temperatures are measured in degrees Fahrenheit.) Assume that Newton’s
law of cooling applies.
(5a) Let f(t) be the temperature of the coffee at time t. Write a differential equation
satisfied by f(t). Your equation may include one or more unknown constants.
Solution. df

dt = −k(f(t)− 70) for some constant k. (k > 0 in this problem.) �
Comment. A common error was failure to write any differential equation at all. �
(5b) Write the general solution of your differential equation.
Solution. f(t) = 70+Ce−kt where C is an arbitrary constant. (It was possible to compute
C from the information given, but this was not required; full credit was given for either
answer.) �
(5c) 3 minutes after the coffee is served, its temperature is 180 degrees. At what time will
the coffee cool to 160 degrees? Express your answer in minutes after the coffee is served.
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Solution. Since f(0) = 190, C = 120. Since f(3) = 180, 70 + 120e−k·3 = 180. Therefore
e−3k = 180−70

120 = 11
12 . Therefore 3k = ln(12/11), so k = 1

2 ln(12/11).
Now we solve 160 = f(t) = 70+120e−kt with this value of k. We find that e−kt = 90

120 = 3
4 ,

so kt = ln(4/3), so

t =
ln(4/3)
k

=
ln(4/3)

1
2 ln(12/11)

=
2 ln(4/3)
ln(12/11)

.

�
(6) Show your steps in an organized, legible manner to receive credit. Let C be the circle
with radius 1 centered at (2, 0) in the xy plane. The region enclosed by C is rotated around
the y axis to generate a three dimensional solid known to mathematicians as a torus, and
to law enforcement officers as a staple food.
(6a) Using the method of cylindrical shells, express the volume of this solid as an integral.
Solution. V = 2π

∫ 3
1 x·2

√
1− (x− 2)2 dx. (Some students missed a factor of 2; they didn’t

take into account the part of the solid in the region y < 0. One point was deducted.) �
(6b) Evaluate this integral, using methods and results taught in this course. (You may not
be able to find an antiderivative, but it is possible to evaluate the definite integral using
material taught in this course.)
Solution. Substitute x = t+ 2 to write the integral as

4π
∫ 1

−1
(t+ 2)

√
1− t2 dt = 4π

∫ 1

−1
t
√

1− t2 dt+ 4π
∫ 1

−1
2
√

1− t2 dt.

Now
∫ 1
−1 2
√

1− t2 dt represents the area of the circle (or disk) x2 + y2 ≤ 1 in the xy

plane; this area is π, as we calculated in lecture one day in late November. The integral∫ 1
−1 t
√

1− t2 dt is the integral of an odd function over an interval of the form [−1, 1], so it
equals zero! Therefore in total we find that the volume equals

4π
∫ 3

1
x·2
√

1− (x− 2)2 dx = 4π
∫ 1

−1
t
√

1− t2 dt+4π
∫ 1

−1
2
√

1− t2 dt = 4π·0+4π·π = 4π2.

�
Comment. There is an alternative approach: It is possible to evaluate

∫
t
√

1− t2 dt via
the substitution u = 1− t2. We get du = −2t dt, so t dt = −1

2 du, and the integral becomes

−1
2

∫
u1/2 du = −1

2
· 2

3
u3/2 + C = −1

3(1− t2)3/2 + C

where C is an arbitrary constant. This function has the same value at +1 as at −1, so by
plugging in the endpoints of integration and subtracting, we get 0.

This is justified by the formula
∫ b
a f(g(x))g′(x) dx =

∫ g(b)
g(a) f(u) du. �

Comment. Credit was given in part (b) for progress on any integral which was close to
the correct answer to part (a), or was equally challenging, but not for work on incorrect
answers to part (a) which were easier to evaluate than was the correct integral. �
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(7a) An emu and a wombat race along a straight line, beginning at time t = 0. The wombat
is given a head start. At time t, their positions are E(t) and W (t), respectively. Suppose
that W (t) = 1 + t for all t ≥ 0, that E(0) = 0, and that E′′(t) < 0 for all t ≥ 0. What is
the maximum possible number of times t > 0 at which E(t) can be equal to W (t)? Explain
your answer briefly.
Answer. The function f(t) = E(t) −W (t) can vanish for at most two times t, because
f ′′(t) = E′′(t)− 0 < 0 for all t. If f were to vanish at t1 < t2 < t3, then by Rolle’s theorem,
f ′ would vanish at some time c1 in (t1, t2), and also at some time c2 in (t2, t3). Applying
Rolle’s Theorem to f ′, we would conclude that f ′′(c) = 0 for some c in (c1, c2). This would
contradict the fact that f ′′ is always negative. �
(7b) Define: f has an inflection point at x.
Answer. f has an inflection point at x if the direction of concavity of the graph of f
changes at x, either from convex up to convex down, or vice versa. �
(7c) Let t = time, s(t) = the position of a projectile at time t, and v(t) = its velocity. Let
a < b be two times. We have defined two kinds of averages of v over the interval [a, b]: (i)
The net change in position divided by the elapsed time, and (ii) (b − a)−1

∫ b
a v(t) dt. How

are these two averages related to one another? Explain very briefly.
Answer. They are equal. By the FTC,∫ b

a
v(t) dt = s(b)− s(a) = the net change in position.

Since b − a = the elapsed time, dividing both sides by b − a shows that the two averages
are equal. �
(7d) If f(0) = 0, f ′(0) = −1, and f ′′(x) ≤ 2 for all x, what is the largest possible value of
f(3)?
Answer. f(3) ≤ 6. Consider the function g(x) = f(x)− (−x+x2). Then g(0) = g′(0) = 0,
and g′′(x) ≤ f ′′(x)− 2 ≤ 0 for all x. Therefore g′(x) ≤ g′(0) = 0 for all x ≥ 0. Therefore g
is a decreasing function on [0,∞). Therefore g(3) ≤ g(0) = 0. But g(3) = f(3)−(−3+9) =
f(3)− 6. So f(3)− 6 ≤ 0. On the other hand, the function f(x) = −x+ x2 satisfies all of
the assumptions, and satisfies f(3) = 6. �
(7e) If f ′(−1) = f ′(1), and if f ′′(x) exists and is a continuous function on [−1, 1], then two
conclusions can be drawn about f ′′. What are they?
Answer. First, f ′′(c) = 0 for some c in (−1, 1) (Rolle’s Theorem). Second,

∫ 1
−1 f

′′(x) dx =
f ′(1)− f ′(−1) = 0. �
(7f) If f and its derivative f ′ are continuous functions defined for all real numbers, and if
f ′(x+ 1) = f ′(x) for all x, what conclusion can be drawn about f?
Answer. f(x+ 1)− f(x) is a constant, independent of x. Indeed,

f(x+ 1)− f(x) =
∫ x+1

0
f ′(t) dt−

∫ x

0
f ′(t) dt =

∫ 1

0
f ′(t) dt+

∫ x+1

1
f ′(t) dt−

∫ x

0
f ′(t) dt.
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But by substituting t = s+ 1 gives∫ x+1

1
f ′(t) dt =

∫ x

0
f ′(s+ 1) sx =

∫ x

0
f ′(s) ds,

using the assumption about f ′. So the last two integrals cancel, leaving f(x+ 1)− f(x) =∫ 1
0 f
′(t) dt. (Detailed justification was not required for credit. We had discussed an example

of this type in class as part of the unit on graph sketching.) �
(7g) Let f be a continuous function defined for all x ≥ 0. For s > 0 let g(s) =
s−1

∫ s
0 f(x) dx. Suppose that t is a positive number such that g(t) ≥ g(s) for every s > 0.

Find an equation relating f(t) to g(t).
Answer. f(t) = g(t). Indeed, the assumption says that g has a local maximum at t.
Therefore g′(t) = 0. By the FTC and the product rule,

g′(t) = −t−2

∫ t

0
f(x) dx+ t−1f(t).

Since g′(t) = 0, multiplying through by t gives

0 = −t−1

∫ t

0
f(x) dx+ f(t) = −g(t) + f(t).

�
(7h) Explain briefly how the formula xn+1 = xn − f(xn)

f ′(xn) in Newton’s method is derived.
Answer. In Newton’s method, one wants to solve f(x) = 0, approximately. The linear
approximation says that f(xn+1) is approximately equal to f(x) + (x− xn)f ′(xn). Setting
this approximation (rather than f itself) equal to zero and solving for x leads to Newton’s
formula. �
(7i) If you were asked, as the final problem on this exam, to derive the formula arcsec′(x) =

1
x
√
x2−1

, assuming that arcsec is differentiable, how would you begin? You need not give a
proof or do any calculations, but show that you know what to calculate.
Answer. sec(arcsec(x)) = x for all x in the domain of arcsec. Apply d

dx to both sides of
this equation, and use the chain rule (full credit for getting this far!) to get

sec′(arcsec(x)) · arcsec′(x) = 1.

Solve for arcsec′(x), use sec′(x) = tan(x), and simplify tan(arcsec(x)). �


