Problem 1:

You are given a mixture of components 1 and 2 on your first day of work at A. Z. O. Trope Corporation. You know nothing initially, except that you need to separate these species, and you find a notebook that shows the values of their activity coefficients in a binary system of 1 and 2 .

Part A:

Assuming a low temperature separation process, show the relationship between the vapor pressures of 1 and 2 and their activity coefficients at the azeotrope. Assume that you are given the vapor pressures of 1 and $2, P_{1}$ vap and P_{2} vap, at the temperature of the separation unit, T, and the activity coefficients can be assumed to be γ_{1} and γ_{2}.

Solution:

$$
\begin{array}{ll}
P y_{1}=P_{1}^{\text {vap }} x_{1} \gamma_{1} & x_{1}=y_{1} \\
P y_{2}=P_{2}^{\text {vap }} x_{2} \gamma_{2} & x_{2}=y_{2}
\end{array} \quad \text { At the azeotrope }
$$

P in both equations must be equal because it is the total system pressure, thus

$$
\begin{aligned}
& P_{1}^{\text {vap }} \gamma_{1}=P_{2}^{\text {vap }} \gamma_{2} \\
& \frac{P_{1}^{\text {vap }}}{P_{2}^{\text {vap }}}=\frac{\gamma_{2}}{\gamma_{1}}
\end{aligned}
$$

Part B:

You are given the vapor pressure of component 1 at a temperature T and the total pressure, P . Find an expression for the activity coefficient using P_{1} vap and P for low values of P at the azeotrope.

Solution:

$$
\gamma_{1}=\frac{P}{P_{1}^{\text {vap }}}
$$

Part C:

Given expressions for γ_{1} and γ_{2}, find the mole fraction of component 2 at the azeotrope.

$$
\ln \left(\gamma_{1}\right)=B x_{2}^{2} \quad \text { and } \quad \ln \left(\gamma_{2}\right)=B x_{1}^{2}
$$

Assuming that

$$
\left|\ln \frac{P_{1}^{\text {vap }}}{P_{2}^{\text {vap }}}\right|<|B| \text { and } B<2
$$

Solution:

$$
\begin{gathered}
\frac{P_{1}^{\text {vap }}}{P_{2}^{\text {vap }}}=\frac{\exp \left[B x_{1}^{2}\right]}{\exp \left[B x_{2}^{2}\right]} \\
\frac{P_{1}^{\text {vap }}}{P_{2}^{\text {vap }}}=\exp \left[B\left(x_{1}^{2}-x_{2}^{2}\right)\right] \\
\ln \left(\frac{P_{1}^{\text {vap }}}{P_{2}^{\text {vap }}}\right)=B\left(x_{1}^{2}-x_{2}^{2}\right) \\
\frac{1}{B} \ln \left(\frac{P_{1}^{\text {vap }}}{P_{2}^{\text {vap }}}\right)=\left(\left(1-x_{2}\right)^{2}-x_{2}^{2}\right) \\
\frac{1}{B} \ln \left(\frac{P_{1}^{\text {vap }}}{P_{2}^{\text {vap }}}\right)=1-2 x_{2} \\
\frac{1}{2}\left(1-\frac{1}{B} \ln \left(\frac{P_{1}^{\text {vap }}}{P_{2}^{\text {vap }}}\right)\right)=x_{2}
\end{gathered}
$$

Part D:

Show the thermodynamic consistency of the equations for γ_{1} and γ_{2}.
Solution:
Using the Gibbs-Duhem Equation...

$$
\begin{gathered}
\frac{x_{1}}{\gamma_{1}} \frac{\partial \gamma_{1}}{\partial x_{1}}+\frac{x_{2}}{\gamma_{2}} \frac{\partial \gamma_{2}}{\partial x_{1}}=0 \\
\frac{x_{1}}{\gamma_{1}} \frac{\partial\left(\exp \left[B x_{2}^{2}\right]\right)}{\partial x_{1}}+\frac{x_{2}}{\gamma_{2}} \frac{\partial\left(\exp \left[B x_{1}^{2}\right]\right)}{\partial x_{1}}=0 \\
\frac{x_{1}}{\exp \left[B x_{2}^{2}\right]} \frac{\partial\left(\exp \left[B x_{2}^{2}\right]\right)}{\partial x_{1}}+\frac{x_{2}}{\exp \left[B x_{1}^{2}\right]} \frac{\partial\left(\exp \left[B x_{1}^{2}\right]\right)}{\partial x_{1}}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{x_{1}}{\exp \left[B x_{2}^{2}\right]} \frac{\partial\left(\exp \left[B\left(1-x_{1}\right)^{2}\right]\right)}{\partial x_{1}}+\frac{x_{2}}{\exp \left[B x_{1}^{2}\right]} \frac{\partial\left(\exp \left[B x_{1}^{2}\right]\right)}{\partial x_{1}}=0 \\
\frac{x_{1}}{\exp \left[B x_{2}^{2}\right]}\left(\exp \left[B x_{2}^{2}\right]\right)\left(-2 B x_{2}\right)+\frac{x_{2}}{\exp \left[B x_{1}^{2}\right]}\left(\exp \left[B x_{1}^{2}\right]\right)\left(2 B x_{1}\right)=0 \\
-2 B x_{1} x_{2}+2 B x_{1} x_{2}=0
\end{gathered}
$$

These expressions for activity coefficient are thermodynamically consistent.
Part E:
Name two methods used to separate azeotropic mixtures.
Solution:
Answers will vary.

Problem 2:

a) Derive the following relationship:

$$
\left(\frac{\partial(A / T)}{\partial T}\right)_{V}=-\frac{U}{T^{2}}
$$

$$
\begin{aligned}
\frac{\partial}{\partial T}\left(\frac{A}{T}\right)_{V} & =\frac{1}{T}\left(\frac{\partial A}{\partial T}\right)_{V}-\frac{A}{T^{2}} \\
\frac{\partial}{\partial T}\left(\frac{A}{T}\right)_{V} & =\frac{1}{T} S-\frac{U-T S}{T^{2}} \\
\frac{\partial}{\partial T}\left(\frac{A}{T}\right)_{V} & =\frac{S}{T}-\frac{U}{T^{2}}-\frac{S}{T} \\
\frac{\partial}{\partial T}\left(\frac{A}{T}\right)_{V} & =-\frac{U}{T^{2}}
\end{aligned}
$$

b) Find the Maxwell relationship below (show all work):

$$
\left(\frac{\partial S}{\partial P}\right)_{T, N}=
$$

$$
\begin{aligned}
& \left(\frac{\partial S}{\partial P}\right)_{T, N} \\
& \left(\frac{\partial S}{\partial P}\right)_{T, N}=\frac{\partial^{2} G}{\partial P \partial T}=\frac{\partial}{\partial P}\left[\left(\frac{\partial G}{\partial T}\right)_{P, N}\right]_{T, N} \\
& \left(\frac{\partial S}{\partial P}\right)_{T, N}=\frac{\partial^{2} G}{\partial P \partial T}=\frac{\partial}{\partial P}[-S]_{T, N} \\
& \frac{\partial^{2} G}{\partial P \partial T}=\frac{\partial^{2} G}{\partial T \partial P} \\
& \frac{\partial^{2} G}{\partial T \partial P}=\frac{\partial}{\partial T}\left[\left(\frac{\partial G}{\partial P}\right)_{T, N}\right]_{P, N} \\
& \frac{\partial^{2} G}{\partial T \partial P}=\frac{\partial}{\partial \tau\rceil}[V]_{P, N} \\
& \left(\frac{\partial S}{\partial P}\right)_{T, N}=-\left(\frac{\partial V}{\partial T}\right)_{P, N}
\end{aligned}
$$

Question 3

You and friend decide to go on vacation. You manage to rent a cabin high in the Rockies for some skiing. While staying there, you get hungry, and decide to cook dinner. Being a poor college student, you decide to cook some pasta.

Part A: You fill a pot with some water, and set it on the stove to boil. For some reason, this pot has a built in thermometer, which gets immersed in the water. What temperature, $\mathrm{T}_{\text {rock, }}$ will it read when the water boils? The following constants might be useful:
Patm Pressure at sea level
$P_{\text {rock }} \quad$ Pressure at your cabin
$\mathrm{T}_{\mathrm{atm}} \quad$ Boiling temperature of water at sea level
$\mathrm{C}_{\mathrm{p}, \mathrm{s}} \quad$ Heat capacity of solid water
$\mathrm{C}_{\mathrm{p}, 1} \quad$ Heat capacity of liquid water
$C_{p, v} \quad$ Heat capacity of gaseous water
$\Delta H_{\text {vape }} \quad$ Heat of vaporization of water
$\Delta H_{\text {fuss }} \quad$ Heat of fusion of water sri lid
$\beta_{\mathrm{s}} \quad$ Volume expansivity of liquid water
$\beta_{1} \quad$ Volume expansivity of liquid water
$\beta_{v} \quad$ Volume expansivity of gaseous water
(Note: These constants only apply for part A. Disregard them and any connotations they imply for the rest of the problem)

- Use Clausius - Clapey ron Equator $\ln \left(\frac{P_{\text {atm }}}{P_{\text {rock }}}\right)$
$\left[\frac{R}{\Delta H_{\text {lap }}} \ln \left(\frac{P_{\text {atm }}}{P_{\text {rock }}}\right)+\frac{1}{r_{\text {atm }}}\right]^{-1}$

Part B: After eating, you discover that a calorimeter was also attached to your pot 8 (What a marvelous contraption this is). And what luck, it seems that the device kept a recording of the heat capacity of the water as it was being
heated! Being the curious chemical engineer that you are, you decided to roughly sketch the plot of heat capacity of liquid water versus temperature around its boiling point. Please draw this curve below, and explain its behavior.

- at the bailing print $c_{p} \rightarrow \infty$

$$
C_{p}=\left(\frac{d H}{d T}\right)_{p}
$$

$$
\left.C p\right|_{T_{\text {boil }}} \approx\left(\frac{\Delta H_{\text {lap }}}{O}\right) \rightarrow \infty, d T \text { at the boils }
$$

point is zeno,
as titis a
phase change

Part C: Your friend decides to cook after you. However, there's a problem: the water lines have frozen. You could use the gas on the stove to melt ice, but gas is expensive, so you would rather not. Luckily, your friend has an idea. He's going to take a block of ice, and crush (compress) it into water between his hands! Will this actually work? Why or why not?

Assume your friend works out a lot, and is strong, really strong, so strong that he can generate lots of pressure with his hands. Also assume that any ice he crushes is compressed isothermally due him wearing insulating gloves.
Yes, it will work

P-T curve of bate

-iso thermal compression (moving vertically on a $p-r$ curve) will trasion for solid to Liquid, as the solid-liquid eq carve has a regaling slope

$$
\begin{aligned}
\left(\frac{d p}{d T}\right)_{s-L}=\frac{\Delta s}{\Delta V}, & \Delta S=s^{L}-s^{s}>0 \\
\Delta V & =V^{L}-V^{s}<0 \\
\therefore & \left(\frac{d p}{d T}\right)_{S-L}<0
\end{aligned}
$$

Your friend manages to get some water somehow. He puts it on the stove, and turns on the heat. However, he throws a little bit of olive oil into the water first (So the pasta doesn't stick he claims). The mole fraction of oil in the pot is very low, so low that it falls within the Henry's Law regime. Here, instead of the typical equilibrium condition, the partial pressure of oil in solution is given as:

$$
P_{\mathrm{oil}, 1}=H x_{\mathrm{oil}}
$$

Where, $\mathrm{P}_{\text {oil, }}$ is the partial pressure of oil in the liquid, $\mathrm{x}_{\text {oil }}$ is the mole fraction of oil in the liquid, and H is called a Henry's law coefficient. Water still follows the usual equilibrium criteria.

Use the following constants:
$\mathrm{x}_{\text {oil }} \quad$ Mole fraction of oil in the liquid
H Henry's law constant of oil in water
$P^{\text {sat }}$ Saturation vapor pressure of water

Part D: Find the mole fractions of oil and water in the first bubble of vapor that will form that is in equilibrium with this solution, and the pressure at which this occurs (Your answers should only include $\mathrm{x}_{\text {oil, }} \mathrm{H}$, and Pat). Assume the liquid and vapor behave ideally save for the use of Henry's law for the oil in the liquid state

What is the molecular basis for oil's partial pressure being dependent on a Henry's law constant, and not its pure vapor pressure, when the oil is very dilute?

$$
\begin{gathered}
y_{\text {oil }} P=X_{\text {oil }} H \\
y_{w} P=x_{w} p^{\text {sat }} \\
2 y_{i} P=P=x_{\text {oil }} H+x_{w} p^{s+1} \\
P=x_{\text {oil }}\left(H-p_{s s t}\right)+P_{\text {sat }}
\end{gathered}
$$

This page is left intentionally left blank for your answers.

- cause of Henry's Law:

Solvent
Boxes i,

- In the case of pie oil, oil is always surrounded by other molecules. For Henry's law however, it is always surrounded by wat molecules.
- What govern the volatility of oil is in pat determined by it molecule inkactons with neghboonng molecules. In Henry's law, this is water mokcules, not other oil molecules. Merefor, pail would be a prov descripte of oil's volanlity if it was dilute. Insked, we use a Hoary's Law consul, It

