$Q 1$

$\xrightarrow{\mathrm{U}_{A}} \xrightarrow{\mathrm{u}^{u_{B}}}$
momentum conservation:

$$
\begin{aligned}
& \left\{\begin{array}{l}
L m V_{A}=m U_{A}+m u_{B} \\
P=\frac{E_{f}-E_{i}}{E_{i}}=\frac{\frac{1}{2} m U_{A}^{2}+\frac{1}{2} m U_{B}^{2}-\frac{1}{2} m V_{A}^{2}}{\frac{1}{2} m V_{A}^{2}}
\end{array}\right. \\
& \Rightarrow \quad \frac{u_{A}}{v_{A}}+\frac{u_{B}}{v_{A}}=1 \\
& \left\{\left(\frac{u_{A}}{v_{A}}\right)^{2}+\left(\frac{u_{B}}{v_{A}}\right)^{2}-1=p\right. \\
& \Rightarrow\left(\frac{U_{A}}{V_{A}}\right)^{2}+\left(1-\frac{W_{A}}{V_{A}}\right)^{2}-1=p \\
& 2\left(\frac{u_{A}}{v_{A}}\right)^{2}-2\left(\frac{u_{A}}{v_{A}}\right)-p=0 \quad \text {, take }-u_{A}<u_{B} \\
& \frac{u_{A}}{v_{A}}=\frac{2 \frac{1}{8} \sqrt{4+8 P}}{4}=\frac{1-\sqrt{1+2 p}}{2} \\
& \frac{u_{B}}{V_{A}}=\frac{1+\sqrt{1+2 P}}{2}
\end{aligned}
$$

\#2

Rollw' w/0 slipping

$$
\begin{equation*}
\text { (2) } v_{p}=v_{s}-\omega R=0 \Rightarrow \omega=v_{s} / R \tag{2}
\end{equation*}
$$

$$
\sum F_{x}=0 \Rightarrow \frac{P_{x} \text { CONSERVED }}{\Rightarrow-M V_{M}+M_{s} V_{s}=0 \quad\left(P_{1}=0\right)} \Rightarrow
$$

$$
\begin{equation*}
\vec{V}_{M} \equiv-V_{M} \hat{x} \quad \vec{V}_{S} \equiv V_{S} \hat{x} \quad \Rightarrow \quad V_{M}=\frac{M_{S}}{M} \cdot V_{S} \tag{3}
\end{equation*}
$$

Ply 2,3 into 1

$$
\begin{align*}
& M_{s} g h=\frac{1}{2} M_{s} V_{S}^{2}+\frac{1}{2} I \cdot \frac{V_{s}^{2}}{R^{2}}+\frac{1}{2} M \frac{M_{s}^{2}}{M^{2}} V_{s}^{2} \Rightarrow M_{s g h}=\frac{1}{2} M_{s} V_{s}^{2}\left(1+\frac{I}{M_{3} L^{2}}+\frac{M_{s}}{M}\right) \\
& \Rightarrow V_{S}=\frac{2 g h}{1+\frac{I}{M_{s} R^{2}}+\frac{M_{S}}{M} \quad I_{\text {BaM }}=\frac{2}{S} M_{s} R^{2}} \begin{array}{l}
\frac{2 g h}{\frac{7}{S}+\frac{M_{s}}{M}} \hat{x}
\end{array} \tag{4}
\end{align*}
$$

Checte: y $I=0, M \rightarrow \infty \quad V_{1}=\sqrt{2 g h}$
Ply mot. 4

$$
\frac{V_{m t_{0} 4}}{V_{M}=\frac{M_{s}}{M}} \cdot \frac{2 g h}{\frac{7}{5}+\frac{M_{3}}{M}} \quad\left[\vec{V}_{M}=-\frac{M_{s}}{\frac{2 g h}{\frac{7}{5}+\frac{M_{s}}{M}}} x\right.
$$

$$
\begin{align*}
& \text { (1) }{ }^{R} \\
& U_{y}=0 \\
& \text { No friction } \\
& \text { Eneray Gonserved } \because \text { frictionten table and rolling w/o slipping } \\
& E_{1}=E_{2} \quad M_{s} g(h+R)=M_{s} g R+\frac{1}{2} M_{s} v_{s}^{2}+\frac{1}{2} I \omega^{2}+\frac{1}{2} M v_{m}^{2} \\
& \Rightarrow M_{s g h}=\frac{1}{2} M_{s} v_{s}^{2}+\frac{1}{2} I \omega^{2}+\frac{1}{2} M V_{n}^{2} \tag{1}
\end{align*}
$$

为 3.
a) $d U=(d m) g y=\lambda d y g y$
infinitesimal potential energy of the cord btw y and $y+d y o$ and $\lambda=M / L$ then

$$
\begin{aligned}
U(Y) & =\int d U=M / L g \int_{0}^{L-Y} y d y \\
& =M g \cdot \frac{1}{L} \cdot \frac{(L-Y)^{2}}{2}=\frac{M g}{2 L}(L-Y)^{2}
\end{aligned}
$$

or using center of mass for $(L-Y)$ cord.
b) We use energy conservation,

$$
E_{i}=U(Y=0)+\frac{1}{2} M[V(Y=0)]=U(Y=0)
$$

as $V(Y=0)=0$.

$$
E_{i}=E(Y)=U(Y)+\frac{1}{2} M V(Y)^{2}
$$

then $V(Y)=\sqrt{\frac{2(U(Y=0)-U(Y))}{M}}$

$$
=\sqrt{2 / M\left(\frac{M_{g}}{2 L} L^{2}-\frac{M_{g}}{2 L}(L-Y)^{2}\right)}=\sqrt{g / L\left(L^{2}-(L-Y)^{2}\right)}
$$

Midterm 2 Solution: Problem 4

Physics 7A, UC Berkeley, Spring 2011, Prof. A. Speliotopoulos Grader: Aaron Alpert

Linear Dynamics. We draw the free body diagram as shown, making careful note of the fact that we have defined clockwise as positive rotation. We write down the linear dynamics equation,

$$
\begin{equation*}
\sum F_{x}=F-f_{s}=m a . \tag{1}
\end{equation*}
$$

Rotational Dynamics. The magnitude of the torque about the CM due to F is $r F \sin \phi$, as usual, but we note that in this definition, ϕ is the angle between vectors $\boldsymbol{\ell}$ and \mathbf{F}. As shown in the diagram, θ is the angle between ℓ and the vertical. Thus, we must use $\ell \cos \theta$, which is the perpendicular length between the disk's center and \mathbf{F}. For the frictional force, the corresponding torque's magnitude is $f_{s} R$. Both forces tend to cause clockwise rotation, so,

$$
\begin{equation*}
\sum \tau=F \ell \cos \theta+f_{s} R=I \alpha . \tag{2}
\end{equation*}
$$

[If you defined counter-clockwise as positive, the left hand side would have a negative.] For a disk, $I=\frac{1}{2} M R^{2}$, so

$$
\begin{equation*}
\sum \tau=F \ell \cos \theta+f_{s} R=\frac{1}{2} M R^{2} \alpha . \tag{3}
\end{equation*}
$$

Kinematic Relations. The disk rolls without slipping. We note that if counter-clockwise were defined as positive, the following equation would have a negative sign on one side.

$$
\begin{equation*}
a=R \alpha \tag{4}
\end{equation*}
$$

Solution. We solve equations 1, 3, and 4 for the unknowns f_{s}, α, and a. Begin by using 4 to eliminate a from 1 .

$$
\begin{equation*}
F-f_{s}=m a=m(R \alpha) \quad \rightarrow \quad \alpha=\frac{F-f_{s}}{m R} \tag{5}
\end{equation*}
$$

Substitute the expression for α in 5 into 3 .

$$
\begin{array}{r}
F \ell \cos \theta+f_{s} R=\frac{1}{2} m R^{2}\left(\frac{F-f_{s}}{m R}\right)=\frac{1}{2} R\left(F-f_{s}\right) \\
\frac{3}{2} f_{s} R=F\left(\frac{1}{2} R-\ell \cos \theta\right) \quad \rightarrow \quad f_{s}=\frac{2}{3} F\left(\frac{1}{2}-\frac{\ell}{R} \cos \theta\right) \tag{7}
\end{array}
$$

51 Solution
FBI

$m_{A}-g$

Net force + net torque equations

$$
\begin{aligned}
& m_{A}: D T-m_{A} g=m_{A} a_{A} \\
& m_{B} \text { 2) } T-m_{B} g=m_{B} a_{B}
\end{aligned}
$$

3) $-T \cdot R=\left(\frac{1}{2} r_{B} R^{2}\right) \cdot \alpha_{B}$
net torque clakwise is negate
constraint for rolling without slipping
4) $a_{B}-\alpha_{B} \cdot R=-a_{A}$ absolute k acceleration of point on disk in contact with rope is accelesting at $-a_{A}$

4 unknown $T, \alpha_{B}, a_{A}, a_{B}$
4 equation! solve for a_{B} and a_{A}

$$
\begin{array}{cc}
1)+2) & 2 T-\left(m_{A}+m_{B}\right) g=m_{A} a_{A}+m_{B} a_{B} \\
1)-2) \quad & \left(m_{B}-m_{A}\right) g=m_{A} a_{A}-m_{B} a_{B} \\
4) \rightarrow 3) \quad & -T \cdot R=\left(\frac{1}{2} m_{B} R^{2}\right) \frac{\left(a_{B}+a_{A}\right)}{R} \\
& 5)-T=\frac{1}{2} m_{B}\left(a_{B}+a_{A}\right) \\
& -2 \cdot 5) \rightarrow 1)+2) \\
1)-2) * & \left(m_{A}+m_{B}\right) g=\left(m_{A}+m_{B}\right) a_{A}+2 m_{B} a_{B} \\
* & \left(m_{A} a_{A}-m_{B} a_{B}\right.
\end{array}
$$

2 unknomns, $a_{A} \in a_{B}, 2$ equations!

$$
\begin{aligned}
& a_{A}=\frac{m_{B}-3 m_{A}}{3 m_{A}+m_{B}} \cdot g \\
& a_{B}=\frac{-\left(m_{A}+m_{B}\right)}{3 m_{A}+m_{B}} \cdot g
\end{aligned}
$$

