ME 106.2

FLUID MECHANICS
 EXAM 1 - open book

1.(25\%) Consider the steady two-dimensional flow field with Cartesian velocity components

$$
(u, v)=(2 a x,-a y)
$$

where a is a positive constant.
(a) [10] Determine and sketch the streamlines of the flow.
(b) [5] Calculate the divergence of the field. What can you say about the compressibility of the flow field?
(c) [10] Assuming that the density field is uniform (no spatial dependence), determine the density as a function of time using the differential continuity equation.
$\mathbf{2 . (2 5 \%)}$) A closed rigid cylindrical container of diameter $2 a$ and height H contains equal volumes of two immiscible liquids of densities ρ_{1} and ρ_{2} such that $\rho_{1}>\rho_{2}$. The container and its contents are rotating at a constant angular velocity of Ω in the presence of gravity. Let us determine the equation for shape of the interface $h(r)$ between the two liquids. Assume that the pressure at the top center is zero.
(a) [10] Determine the pressure fields in each of the liquids. Leave the interface location H_{o} as a free parameter.
(b) [5] Obtain the equation for the interface shape $h(r)$ by using the continuity of pressure at the interface.
(c) [5] Finally, determine H_{o} by using the volumetric information.
(d) [5] What would the interface shape be if the gravity were absent?
3.(25\%) Consider the wind coming off shore and blowing over Mount Temelpais which is 700 m high where pressure is 0.92 atmosphere. The atmospheric conditions at sea level are $1 \mathrm{~atm}, 288 \mathrm{~K}$ and the wind speed is $20 \mathrm{~m} / \mathrm{s}$. Let us assume that the flow is steady and there are no loses. Do not ignore the elevation change.
(a) [10] Assuming the flow to be incompressible, determine the wind speed at the mountain peak.
(b) [10] Allowing for the compressibility of the flow, determine the wind speed at the top.
(c) [5] Compare the two results and comment on their difference.
4.(25\%) Consider a lawn sprinkler with unequal arms L_{1} and L_{2} as shown in the figure. The water jets have identical mass flow rates \dot{M} and velocities U and discharge azimuthally. Determine the relation between the torque T on the sprinkler and its angular velocity Ω.

