Midterm Solutions

1. A

$$
\begin{array}{lc}
\min & f(x)=(x-a)^{2} \\
\text { s.t. } & x \geq b \\
& x \leq c
\end{array}
$$

The K-T conditions yield

$$
\begin{align*}
2(x-a)-\lambda_{1}-\lambda_{2} & =0 \\
\lambda_{1} & \geq 0 \tag{1}\\
\lambda_{2} & \leq 0 \tag{2}\\
\lambda_{1}(x-b) & =0 \\
\lambda_{2}(x-c) & \geq 0
\end{align*}
$$

Here we can see that x can only be b, c or between b and c.
If $\left.x^{*}=b, \lambda_{2}=0, \lambda_{1}=2\left(x^{*}-a\right)=2(b-a) \quad i\right)$
If $\left.x^{*}=c, \lambda_{1}=0, \lambda_{2}=2\left(x^{*}-a\right)=2(c-a) \quad i i\right)$
If $b<x^{*}<c, \lambda_{1}=\lambda_{2}=0, x^{*}=a \quad$ iii)
Here we begin to discuss in cases.

1) $a<b$
i) holds
ii) $\lambda_{2}>0$, contradictory to (2)
iii) $x^{*}=a$, contradictory to $b<x^{*}<c$

So $x^{*}=b, \lambda_{1}=2(b-a), \lambda_{2}=0, f\left(x^{*}\right)=(b-a)^{2}$
2) $b<a<c$
i) $\lambda_{1}<0$, contradictory to (1)
ii) $\lambda_{2}>0$, contradictory to (2)
iii)holds

So $x^{*}=a, \lambda_{1}=\lambda_{2}=0, f\left(x^{*}\right)=0$
3) $c<a$
i) $\lambda_{1}<0$, contradictory to (1)
ii) holds
iii) $x^{*}=a$, contradictory to $b<x^{*}<c$

So $x^{*}=c, \lambda_{1}=0, \lambda_{2}=2(c-a), f\left(x^{*}\right)=(c-a)^{2}$
B

$$
\begin{array}{lc}
\max & f(x)=(x-a)^{2} \\
\text { s.t. } & x \geq b \\
& \\
& x \leq c
\end{array}
$$

The K-T conditions yield

$$
\begin{align*}
2(x-a)-\lambda_{1}-\lambda_{2} & =0 \\
\lambda_{1} & \leq 0 \tag{3}\\
\lambda_{2} & \geq 0 \tag{4}\\
\lambda_{1}(b-x) & =0 \\
\lambda_{2}(c-x) & \geq 0
\end{align*}
$$

Similarly x can only be b, c or between b and c.
If $\left.x^{*}=b, \lambda_{2}=0, \lambda_{1}=2\left(x^{*}-a\right)=2(b-a) \quad i\right)$
If $\left.x^{*}=c, \lambda_{1}=0, \lambda_{2}=2\left(x^{*}-a\right)=2(c-a) \quad i i\right)$
If $b<x^{*}<c, \lambda_{1}=\lambda_{2}=0, x^{*}=a \quad$ iii)
Here we begin to discuss in cases.

1) $a<b$
i) $\lambda_{1}>0$, contradictory to (3)
ii) holds
iii) $x^{*}=a$, contradictory to $b<x^{*}<c$

So $x^{*}=c, \lambda_{1}=0, \lambda_{2}=2(c-a), f\left(x^{*}\right)=(c-a)^{2}$
2) $b<a<c$
i) holds
ii)holds
iii)holds

But since $f(x)$ is convex, $x=a$ is a minimum, then we are left with cases $x^{*}=b$ or $x^{*}=c$.
Which one is the solution depends on a.
If $b<a<(b+c) / 2, x^{*}=c, \lambda_{1}=\lambda_{2}=0, f\left(x^{*}\right)=(c-a)^{2}$
If $(b+c) / 2<a<c, x^{*}=b, \lambda_{1}=\lambda_{2}=0, f\left(x^{*}\right)=(b-a)^{2}$
3) $c<a$
i) holds
ii) $\lambda_{2}<0$, contradictory to (4)
iii) $x^{*}=a$, contradictory to $b<x^{*}<c$

So $x^{*}=b, \lambda_{1}=2(b-a), \lambda_{2}=0, f\left(x^{*}\right)=(b-a)^{2}$
2. $d=\frac{-\nabla f(x)}{\|\nabla f(x)\|}$ for $\nabla f(x) \neq 0$.
3. Let $s_{j}=\left\{x \mid g_{j}(x) \leq b_{j}\right\}$. Since $g_{j}(x)$ is convex, $\forall x, y \in s_{j}, 0 \leq \lambda \leq 1$,

$$
g_{j}(\lambda x+(1-\lambda) y) \leq \lambda g_{j}(x)+(1-\lambda) g_{j}(y)
$$

Since $g_{j}(x) \leq b_{j}$ and $g_{j}(y) \leq b_{j}$,

$$
g_{j}(\lambda x+(1-\lambda) y) \leq \lambda b_{j}+(1-\lambda) b_{j}=b_{j}
$$

So $\lambda x+(1-\lambda) y \in s_{j}$ and s_{j} is convex.
$\forall x, y \in S, 0 \leq \lambda \leq 1$. Since $S=\bigcap_{j=1}^{n} s_{j}$, it follows that $x, y \in s_{j}$, for $j=1, \ldots, n$. So

$$
\lambda x+(1-\lambda) y \in s_{j}
$$

and

$$
\lambda x+(1-\lambda) y \in \bigcap_{j=1}^{n} s_{j}=S
$$

thus S is convex.
4. We need to solve the problem

$$
\begin{array}{lc}
\max & -x_{1}^{2}+8 x_{1}-x_{2}^{2}+12 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 8 \\
& 0 \leq x_{1} \leq 5 \\
& 0 \leq x_{2} \leq 4
\end{array}
$$

First note that the objective function is concave and the feasible set is convex, therefore any solution of the KT conditions must be a global solution. The KT conditions are:

$$
\begin{aligned}
& -2 x_{1}+8-\lambda_{1}-\lambda_{2}-\lambda_{3}=0 \\
& -2 x_{2}+12-\lambda_{1}-\lambda_{4}-\lambda_{5}=0 \\
& \lambda_{1}\left(8-x_{1}-x_{2}\right)=0 \\
& -\lambda_{2} x_{1}=0 \\
& \lambda_{3}\left(5-x_{1}\right)=0 \\
& -\lambda_{4} x_{2}=0 \\
& \lambda_{5}\left(4-x_{2}\right)=0 \\
& \lambda_{1}, \lambda_{3}, \lambda_{5} \geq 0, \lambda_{2}, \lambda_{4} \leq 0 \text { plus the original constraints. }
\end{aligned}
$$

Alternatively, we can formulate the KT conditions as:

$$
\begin{aligned}
& -2 x_{1}+8-\lambda_{1}-\lambda_{3} \leq 0 \\
& -2 x_{2}+12-\lambda_{1}-\lambda_{5} \leq 0 \\
& \lambda_{1}\left(8-x_{1}-x_{2}\right)=0 \\
& -\left(-2 x_{1}+8-\lambda_{1}-\lambda_{3}\right) x_{1}=0 \\
& \lambda_{3}\left(5-x_{1}\right)=0 \\
& -\left(-2 x_{2}+12-\lambda_{1}-\lambda_{5}\right) x_{2}=0 \\
& \lambda_{5}\left(4-x_{2}\right)=0 \\
& \lambda_{1}, \lambda_{3}, \lambda_{5} \geq 0, \text { plus the original constraints. }
\end{aligned}
$$

Since the unconstrained optimal solution is attained at $(4,6)$, we can expect that the nonnegativity constraints are not biding, therefore we assume that $\lambda_{2}=\lambda_{4}=0$. Trying also $\lambda_{1}=\lambda_{3}=0$ and $\lambda_{5}>0$ we find that $x_{1}=x_{2}=4$ and $\lambda_{5}=4$ satisfy the KT conditions. Then $(4,4)$ is the optimal solution. Since the only positive Lagrange multiplier is λ_{5}, the only constraint that changes the optimal objective when the RHS is changed is $x_{2} \leq 4$ and the rate of change is 4 . Note that even though the constraint $x_{1}+x_{2} \leq 8$ is tight, if we increase the RHS the objective function does not change.
5. Let z be the point on the y axis where the runner enter the water. Then the time spend from s to f is:

$$
g(z)=\frac{\sqrt{x_{1}^{2}+\left(z-y_{1}\right)^{2}}}{v_{1}}+\frac{\sqrt{x_{2}^{2}+\left(z-y_{2}\right)^{2}}}{v_{2}}
$$

We want to minimize $g(z)$. Note that g is the sum of two convex functions. Since $-x_{1}, x_{2}>0$, the function g is everywhere differentiable. Thus the optimality condition in this case is:

$$
g^{\prime}(z)=\frac{z-y_{1}}{v_{1} \sqrt{x_{1}^{2}+\left(z-y_{1}\right)^{2}}}+\frac{z-y_{2}}{v_{2} \sqrt{x_{2}^{2}+\left(z-y_{2}\right)^{2}}}=0 .
$$

If z^{*} is such that $g^{\prime}\left(z^{*}\right)=0$, then z^{*} is the global solution.

