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Midterm Solutions
1. A

min f(x) = (x− a)2

s.t. x ≥ b
x ≤ c

The K-T conditions yield

2(x− a)− λ1 − λ2 = 0

λ1 ≥ 0 (1)

λ2 ≤ 0 (2)

λ1(x− b) = 0

λ2(x− c) ≥ 0

Here we can see that x can only be b, c or between b and c.
If x∗ = b, λ2 = 0, λ1 = 2(x∗ − a) = 2(b− a) i)
If x∗ = c, λ1 = 0, λ2 = 2(x∗ − a) = 2(c− a) ii)
If b < x∗ < c, λ1 = λ2 = 0, x∗ = a iii)

Here we begin to discuss in cases.
1) a < b
i) holds
ii) λ2 > 0, contradictory to (2)
iii) x∗ = a, contradictory to b < x∗ < c
So x∗ = b, λ1 = 2(b− a), λ2 = 0, f(x∗) = (b− a)2

2) b < a < c
i) λ1 < 0, contradictory to (1)
ii)λ2 > 0, contradictory to (2)
iii)holds
So x∗ = a, λ1 = λ2 = 0, f(x∗) = 0

3) c < a
i) λ1 < 0, contradictory to (1)
ii) holds
iii) x∗ = a, contradictory to b < x∗ < c
So x∗ = c, λ1 = 0, λ2 = 2(c− a), f(x∗) = (c− a)2

B

max f(x) = (x− a)2

s.t. x ≥ b
x ≤ c
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The K-T conditions yield

2(x− a)− λ1 − λ2 = 0

λ1 ≤ 0 (3)

λ2 ≥ 0 (4)

λ1(b− x) = 0

λ2(c− x) ≥ 0

Similarly x can only be b, c or between b and c.
If x∗ = b, λ2 = 0, λ1 = 2(x∗ − a) = 2(b− a) i)
If x∗ = c, λ1 = 0, λ2 = 2(x∗ − a) = 2(c− a) ii)
If b < x∗ < c, λ1 = λ2 = 0, x∗ = a iii)

Here we begin to discuss in cases.
1) a < b
i) λ1 > 0, contradictory to (3)
ii) holds
iii) x∗ = a, contradictory to b < x∗ < c
So x∗ = c, λ1 = 0, λ2 = 2(c− a), f(x∗) = (c− a)2

2) b < a < c
i) holds
ii)holds
iii)holds
But since f(x) is convex, x = a is a minimum, then we are left with cases x∗ = b or x∗ = c.
Which one is the solution depends on a.
If b < a < (b+ c)/2, x∗ = c, λ1 = λ2 = 0, f(x∗) = (c− a)2

If (b+ c)/2 < a < c, x∗ = b, λ1 = λ2 = 0, f(x∗) = (b− a)2

3) c < a
i) holds
ii) λ2 < 0, contradictory to (4)
iii) x∗ = a, contradictory to b < x∗ < c
So x∗ = b, λ1 = 2(b− a), λ2 = 0, f(x∗) = (b− a)2

2. d = −5f(x)
||5f(x)|| for 5f(x) 6= 0.

3. Let sj = {x|gj(x) ≤ bj}. Since gj(x) is convex, ∀x, y ∈ sj, 0 ≤ λ ≤ 1,

gj(λx+ (1− λ)y) ≤ λgj(x) + (1− λ)gj(y)

Since gj(x) ≤ bj and gj(y) ≤ bj,

gj(λx+ (1− λ)y) ≤ λbj + (1− λ)bj = bj

So λx+ (1− λ)y ∈ sj and sj is convex.

∀x, y ∈ S, 0 ≤ λ ≤ 1. Since S =
⋂n

j=1 sj, it follows that x, y ∈ sj, for j = 1, ..., n. So

λx+ (1− λ)y ∈ sj
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and

λx+ (1− λ)y ∈
n⋂

j=1

sj = S

thus S is convex.

4. We need to solve the problem

max −x21 + 8x1 − x22 + 12x2
s.t. x1 + x2 ≤ 8

0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 4

First note that the objective function is concave and the feasible set is convex, therefore any
solution of the KT conditions must be a global solution. The KT conditions are:

−2x1 + 8− λ1 − λ2 − λ3 = 0
−2x2 + 12− λ1 − λ4 − λ5 = 0
λ1(8− x1 − x2) = 0
−λ2x1 = 0
λ3(5− x1) = 0
−λ4x2 = 0
λ5(4− x2) = 0
λ1, λ3, λ5 ≥ 0, λ2, λ4 ≤ 0 plus the original constraints.

Alternatively, we can formulate the KT conditions as:

−2x1 + 8− λ1 − λ3 ≤ 0
−2x2 + 12− λ1 − λ5 ≤ 0
λ1(8− x1 − x2) = 0
−(−2x1 + 8− λ1 − λ3)x1 = 0
λ3(5− x1) = 0
−(−2x2 + 12− λ1 − λ5)x2 = 0
λ5(4− x2) = 0
λ1, λ3, λ5 ≥ 0, plus the original constraints.

Since the unconstrained optimal solution is attained at (4,6), we can expect that the non-
negativity constraints are not biding, therefore we assume that λ2 = λ4 = 0. Trying also
λ1 = λ3 = 0 and λ5 > 0 we find that x1 = x2 = 4 and λ5 = 4 satisfy the KT conditions.
Then (4,4) is the optimal solution. Since the only positive Lagrange multiplier is λ5, the only
constraint that changes the optimal objective when the RHS is changed is x2 ≤ 4 and the
rate of change is 4. Note that even though the constraint x1 + x2 ≤ 8 is tight, if we increase
the RHS the objective function does not change.

5. Let z be the point on the y axis where the runner enter the water. Then the time spend from
s to f is:

g(z) =

√
x21 + (z − y1)2

v1
+

√
x22 + (z − y2)2

v2
.
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We want to minimize g(z). Note that g is the sum of two convex functions. Since −x1, x2 > 0,
the function g is everywhere differentiable. Thus the optimality condition in this case is:

g′(z) =
z − y1

v1
√
x21 + (z − y1)2

+
z − y2

v2
√
x22 + (z − y2)2

= 0.

If z∗ is such that g′(z∗) = 0, then z∗ is the global solution.


