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Notes: 

• Not all questions are of equal difficulty, so look over the entire exam 

and budget your time carefully. 

• Please carefully state any assumptions you make. 

• Please write your name on every page in the quiz. 

• You must not discuss a quiz's contents with students who have not 

yet taken the quiz.  If you have inadvertently been exposed to the 

quiz prior to taking it, you must tell the instructor or TA. 

• You will receive no credit for selecting multiple-choice answers 

without giving explanations if the instructions ask you to explain 

your choice. 

 

Writing name on each sheet ________   1 Point 

Question 1 ________ 24 Points 

Question 2 ________ 19 Points  

Question 3 ________ 18 Points 

Question 4 ________ 18 Points 

TOTAL  ________ 80 Points 



NAME:_________________________ 
 

Problem Q4.1: Static Scheduling    24 points 
 

In this problem, we consider the execution of a code segment on a single-issue, in-order 

processor and a VLIW processor.  The code we consider is the SAXPY kernel, which 

scales a vector X by a constant A, adding this quantity to a vector Y. 

 
I1 loop: ld   f0, 0(r1)    # for(i = 0; i < N; i++) 

I2       fmul f2, f0, f1   #   Y[i] = Y[i] + A*X[i]; 

I3       ld   f3, 0(r2) 

I4       fadd f4, f2, f3 

I5       st   f4, 0(r2) 

I6       addi r1, r1, 4 

I7       addi r2, r2, 4 

I8       bne  r1, r3, loop 

 

 

Problem Q4.1.A 4 points 

 

Assume that we execute this code segment on a single-issue, in-order processor with 

perfect branch target prediction and full bypassing.  ALU operations have a one-cycle 

latency, loads have a three-cycle latency, and floating-point operations have a four-cycle 

latency (even when bypassed to store instructions).  How many cycles will the processor 

stall per loop iteration? 

  

There’s a 2-cycle stall due to the RAW hazard between I1 and I2; a 2-cycle stall between 

I3 and I4 (which overlaps a 2-cycle stall between I2 and I4; don’t double-count!); and a 

3-cycle stall between I4 and I5. 

_______7_______ Stall Cycles per Iteration 

    

Problem Q4.1.B 6 points 

 

Reschedule the code to minimize the number of stall cycles, but do not software pipeline 

or unroll the loop.  Now, how many cycles will the processor stall per loop iteration? 

 
I1 loop: ld   f0, 0(r1) 

I2       fmul f2, f0, f1  

I3       ld   f3, 0(r2) 

I4       fadd f4, f2, f3 

I6       addi r1, r1, 4 

I7       addi r2, r2, 4 

I5       st   f4, -4(r2) 

I8       bne  r1, r3, loop 

One of many possible solution is to move the addis between the fadd and the st, but don’t 

forget to change the store’s displacement to account for the new value of r2! 

_______5_______ Stall Cycles per Iteration



NAME:_________________________ 
 

 

 

Problem Q4.1.C 8 points 

 

Software pipeline the loop to eliminate all stalls for the processor in Q4.1.A.  You may 

omit the prolog and epilog code. 

 

A simple algorithm is to reverse the data flow of the loop, turning RAW hazards into 

WAR hazards.  This loop has a 4-stage software pipeline, with the load of X being from 

iteration i, the load of Y and the fadd being from iteration i-1, the fmul being from 

iteration i-2, and the store being from iteration i-3. 

 
I1 loop: st   f4, -12(r2) 

I2       fadd f4, f2, f3  

I3       ld   f3, -4(r2) 

I4       fmul f2, f0, f1 

I5       ld   f0, 0(r1) 

I6       addi r1, r1, 4 

I7       addi r2, r2, 4 

I8       bne  r1, r3, loop 

 

Problem Q4.1.D 6 points 

 

Now, software pipeline the loop for a VLIW machine with the same functional unit 

latencies as the processor in Q4.1.A.  Omit prolog and epilog code.  The VLIW processor 

has one ALU/branch unit, one memory unit, and one floating-point unit.  What speedup 

does the VLIW machine offer compared to the single-issue processor when both run 

software-pipelined code? 

 

You can just schedule the SW pipelined code from above onto this VLIW machine.  

Unfortunately, the fadd->fmul latency still isn’t covered, so we need NOPs; to fix this, 

we could have unrolled the loop once, but that wasn’t required. 

 

Cycle ALU/Branch Unit Memory Unit Floating-Point Unit 

1 addi r1,r1,4 st f4,-12(r2) fadd f4,f2,f3 

2 addi r2,r2,4 ld f3,-4(r2) fmul f2,f0,f1 

3 bne r1,r3,loop ld f0,-4(r1) * 

4 * * * 

5 * * * 

6    

7    

8    

9    

10    

 

_____8/5__________ Speedup



Problem Q4.2: Vectors        19 points 
 

In this problem, we analyze the performance of the SAXPY kernel from Q4.1 on a vector 

machine.  The baseline vector processor we consider has the following features: 

 

• 32 elements per vector register 

• 32 vector registers 

• 4 lanes 

• One integer ALU per lane (one cycle latency) 

• One FPU per lane (four cycle latency, pipelined) 

• One memory unit per lane (four cycle latency, pipelined) 

• No chaining 

• A separate five-stage pipeline for scalar instructions. (The scalar unit does not 

interlock if the vector unit is stalled.) 

 

 

Problem Q4.2.A 9 points 

 

Vectorize the original code from Q4.1, assuming the X and Y arrays do not overlap.  You 

may assume that N is a multiple of the vector length, and that the vector length register 

has already been set accordingly. 

 

The code is nearly identical to the original code of Q4.1, except we use vector registers 

and increment the addresses by the vector length in bytes (32x4). 

 

 
I1 loop: LV     V0, 0(R1) 

I2       FMULVS V2, V0, F1 

I3       LV     V3, 0(R2) 

I4       FADDV  V4, V2, V3 

I5       SV     V4, 0(R2) 

I6       ADDI   R1, R1, 128 

I7       ADDI   R2, R2, 128 

I8       BNE    R1, R3, loop 

 

 



NAME:_________________________ 
 

 

Problem Q4.2.B 5 points 

 

When executing your vectorized code on the baseline vector processor, how many 

floating-point operations complete per cycle on average?  (Note that without chaining, a 

dependent vector instruction cannot begin execution until its source instruction has 

completed writeback, so the functional unit latencies are effectively one cycle longer than 

stated.) 

 

Each loop iteration performs 64 flops.  The easiest way to determine how many cycles it 

takes is to schedule the code.  There’s a 13-cycle latency between dependent instruction 

issue (32/4 cycles to compute, 4 cycles for FU latency, 1 cycle for writeback).  The scalar 

instructions are overlapped easily with the SV, so they aren’t shown.  Don’t forget that 

two memory ops can’t be executing at once, so there’s a structural hazard between SV 

and the next LV! 

 

Instruction Iter 1 begins Iter 2 begins 

LV 0 48 

FMULVS 13 … 

LV 14  

ADDV 27  

SV 40  

 

So, we have 64 flops / 48 cycles (4/3 flops/cycle).  

 

 

Problem Q4.2.C 5 points 

 

Suppose we add chaining support to the vector processor.  Now, how many floating-point 

operations complete per cycle on average? 

 

Now, there’s only a 4 cycle FU latency between dependent instructions.  Be careful not to 

schedule two memory operations to be running concurrently! 

 

Instruction Iter 1 begins Iter 2 begins 

LV 0 24 (structural) 

FMULVS 4 (RAW) … 

LV 8 (structural hazard)  

ADDV 12 (RAW)  

SV 16 (RAW)  

 

So, we have 64 flops / 24 cycles (8/3 flops/cycle).  

 



NAME:_________________________ 
 

Problem Q4.3: Multithreading       18 points 
 

In this problem, we once again consider the SAXPY kernel from Q4.1, analyzing its 

performance on a fine-grained multithreaded in-order processor. 

 

Aside from threading, the processor we consider is identical to the pipeline from Q4.1.A. 

It has perfect branch target prediction and full bypassing.  ALU operations have a one-

cycle latency, loads have a three-cycle latency, and floating-point operations have a four-

cycle latency. 

 

Problem Q4.3.A 6 points 

 

The first implementation of multithreading we consider employs fixed round-robin 

scheduling: every cycle, the processor fetches an instruction from a different thread. 

What is the minimum number of SAXPY threads needed to eliminate all stalls?  Justify 

your answer. 

 

We need to be able to cover the 3 stall cycles (with no intervening instructions), so we 

need 3 additional threads, for a total of 4. 

 

 

 

 

______4_________   Threads 

 

 

Problem Q4.3.B 6 points 

 

Now, assume that the thread scheduler is aware of data hazards and can switch threads 

when an interlock would have occurred due to a RAW hazard.  What is the minimum 

number of SAXPY threads needed to eliminate stalls?  Justify your answer. 

 

The most straightforward way to arrive at the correct answer of 3 threads is to construct a 

stall-free schedule using 3 threads (which is a straightforward exercise), then 

convincingly argue that it’s not possible to create such a schedule with only 2 threads. 

 

 

 

 

 

 

 

_______3________   Threads 



NAME:_________________________ 
 

 

Problem Q4.3.C 6 points 

 

Suppose main memory latency is 200 cycles, so we decide to add a write-allocate, write-

back data cache to the multithreaded processor from Q4.3.B.  We want to execute the 

SAXPY code using 8 threads.  Each thread will operate on a contiguous chunk of the X 

and Y vectors.  Assuming that the X and Y arrays are too large to fit in cache, circle the 

cache parameter(s) that will be most critical to performance.   For each parameter that 

you circle, what value do you recommend? 

 

 

Number of Sets     _____________ Sets 

 

 

 

 

Associativity      _______16______ Ways 

 

 

 

 

Line Size      ________8_____ Words 

 

 

We want an associativity of 16, because we have 16 streams occurring at once (8 threads 

times 2 streams per thread, namely the X and Y arrays).  Credit was given for 8 ways, 

too; depending on the addresses of X and Y and the particular thread interleavings, 8 may 

be sufficient. 

 

Line size is tricky!  To cover a memory latency of 200 cycles, each of the 8 threads must 

average 25 instructions without a cache miss.  We’ll round that up to 4 loop iterations.  In 

4 loop iterations, we access 8 unique words.  Since the streams are unit stride, we’ll 

average one cache miss per 4 loop iterations with 8-word cache lines. 
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