
Computer Architecture and Engineering

CS152 Quiz #4
April 13, 2010

Professor Krste Asanovic

Name:____ANSWER KEY_____

This is a closed book, closed notes exam.

80 Minutes

 8 Pages

Notes:

• Not all questions are of equal difficulty, so look over the entire exam

and budget your time carefully.

• Please carefully state any assumptions you make.

• Please write your name on every page in the quiz.

• You must not discuss a quiz's contents with students who have not

yet taken the quiz. If you have inadvertently been exposed to the

quiz prior to taking it, you must tell the instructor or TA.

• You will receive no credit for selecting multiple-choice answers

without giving explanations if the instructions ask you to explain

your choice.

Writing name on each sheet ________ 1 Point

Question 1 ________ 24 Points

Question 2 ________ 19 Points

Question 3 ________ 18 Points

Question 4 ________ 18 Points

TOTAL ________ 80 Points

NAME:_________________________

Problem Q4.1: Static Scheduling 24 points

In this problem, we consider the execution of a code segment on a single-issue, in-order

processor and a VLIW processor. The code we consider is the SAXPY kernel, which

scales a vector X by a constant A, adding this quantity to a vector Y.

I1 loop: ld f0, 0(r1) # for(i = 0; i < N; i++)

I2 fmul f2, f0, f1 # Y[i] = Y[i] + A*X[i];

I3 ld f3, 0(r2)

I4 fadd f4, f2, f3

I5 st f4, 0(r2)

I6 addi r1, r1, 4

I7 addi r2, r2, 4

I8 bne r1, r3, loop

Problem Q4.1.A 4 points

Assume that we execute this code segment on a single-issue, in-order processor with

perfect branch target prediction and full bypassing. ALU operations have a one-cycle

latency, loads have a three-cycle latency, and floating-point operations have a four-cycle

latency (even when bypassed to store instructions). How many cycles will the processor

stall per loop iteration?

There’s a 2-cycle stall due to the RAW hazard between I1 and I2; a 2-cycle stall between

I3 and I4 (which overlaps a 2-cycle stall between I2 and I4; don’t double-count!); and a

3-cycle stall between I4 and I5.

_______7_______ Stall Cycles per Iteration

Problem Q4.1.B 6 points

Reschedule the code to minimize the number of stall cycles, but do not software pipeline

or unroll the loop. Now, how many cycles will the processor stall per loop iteration?

I1 loop: ld f0, 0(r1)

I2 fmul f2, f0, f1

I3 ld f3, 0(r2)

I4 fadd f4, f2, f3

I6 addi r1, r1, 4

I7 addi r2, r2, 4

I5 st f4, -4(r2)

I8 bne r1, r3, loop

One of many possible solution is to move the addis between the fadd and the st, but don’t

forget to change the store’s displacement to account for the new value of r2!

_______5_______ Stall Cycles per Iteration

NAME:_________________________

Problem Q4.1.C 8 points

Software pipeline the loop to eliminate all stalls for the processor in Q4.1.A. You may

omit the prolog and epilog code.

A simple algorithm is to reverse the data flow of the loop, turning RAW hazards into

WAR hazards. This loop has a 4-stage software pipeline, with the load of X being from

iteration i, the load of Y and the fadd being from iteration i-1, the fmul being from

iteration i-2, and the store being from iteration i-3.

I1 loop: st f4, -12(r2)

I2 fadd f4, f2, f3

I3 ld f3, -4(r2)

I4 fmul f2, f0, f1

I5 ld f0, 0(r1)

I6 addi r1, r1, 4

I7 addi r2, r2, 4

I8 bne r1, r3, loop

Problem Q4.1.D 6 points

Now, software pipeline the loop for a VLIW machine with the same functional unit

latencies as the processor in Q4.1.A. Omit prolog and epilog code. The VLIW processor

has one ALU/branch unit, one memory unit, and one floating-point unit. What speedup

does the VLIW machine offer compared to the single-issue processor when both run

software-pipelined code?

You can just schedule the SW pipelined code from above onto this VLIW machine.

Unfortunately, the fadd->fmul latency still isn’t covered, so we need NOPs; to fix this,

we could have unrolled the loop once, but that wasn’t required.

Cycle ALU/Branch Unit Memory Unit Floating-Point Unit

1 addi r1,r1,4 st f4,-12(r2) fadd f4,f2,f3

2 addi r2,r2,4 ld f3,-4(r2) fmul f2,f0,f1

3 bne r1,r3,loop ld f0,-4(r1) *

4 * * *

5 * * *

6

7

8

9

10

_____8/5__________ Speedup

Problem Q4.2: Vectors 19 points

In this problem, we analyze the performance of the SAXPY kernel from Q4.1 on a vector

machine. The baseline vector processor we consider has the following features:

• 32 elements per vector register

• 32 vector registers

• 4 lanes

• One integer ALU per lane (one cycle latency)

• One FPU per lane (four cycle latency, pipelined)

• One memory unit per lane (four cycle latency, pipelined)

• No chaining

• A separate five-stage pipeline for scalar instructions. (The scalar unit does not

interlock if the vector unit is stalled.)

Problem Q4.2.A 9 points

Vectorize the original code from Q4.1, assuming the X and Y arrays do not overlap. You

may assume that N is a multiple of the vector length, and that the vector length register

has already been set accordingly.

The code is nearly identical to the original code of Q4.1, except we use vector registers

and increment the addresses by the vector length in bytes (32x4).

I1 loop: LV V0, 0(R1)

I2 FMULVS V2, V0, F1

I3 LV V3, 0(R2)

I4 FADDV V4, V2, V3

I5 SV V4, 0(R2)

I6 ADDI R1, R1, 128

I7 ADDI R2, R2, 128

I8 BNE R1, R3, loop

NAME:_________________________

Problem Q4.2.B 5 points

When executing your vectorized code on the baseline vector processor, how many

floating-point operations complete per cycle on average? (Note that without chaining, a

dependent vector instruction cannot begin execution until its source instruction has

completed writeback, so the functional unit latencies are effectively one cycle longer than

stated.)

Each loop iteration performs 64 flops. The easiest way to determine how many cycles it

takes is to schedule the code. There’s a 13-cycle latency between dependent instruction

issue (32/4 cycles to compute, 4 cycles for FU latency, 1 cycle for writeback). The scalar

instructions are overlapped easily with the SV, so they aren’t shown. Don’t forget that

two memory ops can’t be executing at once, so there’s a structural hazard between SV

and the next LV!

Instruction Iter 1 begins Iter 2 begins

LV 0 48

FMULVS 13 …

LV 14

ADDV 27

SV 40

So, we have 64 flops / 48 cycles (4/3 flops/cycle).

Problem Q4.2.C 5 points

Suppose we add chaining support to the vector processor. Now, how many floating-point

operations complete per cycle on average?

Now, there’s only a 4 cycle FU latency between dependent instructions. Be careful not to

schedule two memory operations to be running concurrently!

Instruction Iter 1 begins Iter 2 begins

LV 0 24 (structural)

FMULVS 4 (RAW) …

LV 8 (structural hazard)

ADDV 12 (RAW)

SV 16 (RAW)

So, we have 64 flops / 24 cycles (8/3 flops/cycle).

NAME:_________________________

Problem Q4.3: Multithreading 18 points

In this problem, we once again consider the SAXPY kernel from Q4.1, analyzing its

performance on a fine-grained multithreaded in-order processor.

Aside from threading, the processor we consider is identical to the pipeline from Q4.1.A.

It has perfect branch target prediction and full bypassing. ALU operations have a one-

cycle latency, loads have a three-cycle latency, and floating-point operations have a four-

cycle latency.

Problem Q4.3.A 6 points

The first implementation of multithreading we consider employs fixed round-robin

scheduling: every cycle, the processor fetches an instruction from a different thread.

What is the minimum number of SAXPY threads needed to eliminate all stalls? Justify

your answer.

We need to be able to cover the 3 stall cycles (with no intervening instructions), so we

need 3 additional threads, for a total of 4.

______4_________ Threads

Problem Q4.3.B 6 points

Now, assume that the thread scheduler is aware of data hazards and can switch threads

when an interlock would have occurred due to a RAW hazard. What is the minimum

number of SAXPY threads needed to eliminate stalls? Justify your answer.

The most straightforward way to arrive at the correct answer of 3 threads is to construct a

stall-free schedule using 3 threads (which is a straightforward exercise), then

convincingly argue that it’s not possible to create such a schedule with only 2 threads.

_______3________ Threads

NAME:_________________________

Problem Q4.3.C 6 points

Suppose main memory latency is 200 cycles, so we decide to add a write-allocate, write-

back data cache to the multithreaded processor from Q4.3.B. We want to execute the

SAXPY code using 8 threads. Each thread will operate on a contiguous chunk of the X

and Y vectors. Assuming that the X and Y arrays are too large to fit in cache, circle the

cache parameter(s) that will be most critical to performance. For each parameter that

you circle, what value do you recommend?

Number of Sets _____________ Sets

Associativity _______16______ Ways

Line Size ________8_____ Words

We want an associativity of 16, because we have 16 streams occurring at once (8 threads

times 2 streams per thread, namely the X and Y arrays). Credit was given for 8 ways,

too; depending on the addresses of X and Y and the particular thread interleavings, 8 may

be sufficient.

Line size is tricky! To cover a memory latency of 200 cycles, each of the 8 threads must

average 25 instructions without a cache miss. We’ll round that up to 4 loop iterations. In

4 loop iterations, we access 8 unique words. Since the streams are unit stride, we’ll

average one cache miss per 4 loop iterations with 8-word cache lines.

P
ro

b
le

m
 Q

4
.4

:
Ir

o
n

 L
a

w
 o

f
P

ro
ce

ss
o

r
P

er
fo

rm
a

n
ce

 (
S

h
o

rt
 A

n
sw

er
)

 [

1
8
 p

o
in

ts
]

 C
o
n
si

d
er

a

fi
v
e-

st
ag

e
in

-o
rd

er

R

IS
C

p
ip

el
in

e
as

a

b
as

el
in

e.

 M

ar
k

w

h
et

h
er

th

e
fo

ll
o
w

in
g

m

o
d
if

ic
at

io
n
s

w
il

l
ca

u
se

ea

ch

o
f

th
e

ca
te

g
o
ri

es
 t

o
 i

n
cr

ea
se

,
d

ec
re

a
se

,
o
r

w
h
et

h
er

 t
h
e

m
o
d
if

ic
at

io
n
 w

il
l

h
av

e
n

o
 e

ff
ec

t.

E

x
p

la
in

 y
o
u

r
re

a
so

n
in

g
 t

o
 r

ec
ei

v
e

cr
ed

it
.

In

st
ru

ct
io

n
s

/
P

ro
g
ra

m

C
y
cl

es
 /

 I
n
st

ru
ct

io
n

S

ec
o
n
d
s

/
C

y
cl

e

 W
id

en
in

g
 t

h
e

p
ro

ce
ss

o
r

to
 d

u
al

-

is
su

e
su

p
er

sc
al

ar

 N
o

ef
fe

ct
:

th
is

is

p
u
re

ly

a

m
ic

ro
ar

ch
it

ec
tu

ra
l

ch
an

g
e.

 D
ec

re
as

e:
 w

e
ca

n
 n

o
w

 e
x
ec

u
te

 u
p
 t

o

tw
ic

e
as

m

an
y

in
st

ru
ct

io
n
s

in

th
e

sa
m

e
am

o
u
n
t

o
f

ti
m

e.

 In
cr

ea
se

:
ad

d
it

io
n
al

re

g
is

te
r

fi
le

p
o
rt

s

an
d
 b

y
p
as

s
p
at

h
s

m
ay

 b
e

o
n
 t

h
e

cr
it

ic
al

p
at

h

 M
ig

ra
ti

n
g
 t

o
 a

tr
ad

it
io

n
al

 V
L

IW

ar
ch

it
ec

tu
re

 N
et

d
ec

re
as

e,

b
ec

au
se

si

n
g
le

in
st

ru
ct

io
n
s

ex
p
re

ss

m
u
lt

ip
le

o
p
er

at
io

n
s.

T

o
ta

l
co

d
e

si
ze

is

m

u
ch

g
re

at
er

,
th

o
u
g
h
 (

N
O

P
s)

.

 D
ec

re
as

e:

tr
ad

it
io

n
al

V

L
IW

m
ac

h
in

es
 l

ac
k
 i

n
te

rl
o
ck

s,
 s

o
 C

P
I=

1
.

 N
o

ef
fe

ct
,

to

fi
rs

t
o
rd

er
:

al
l

n
ew

h
ar

d
w

ar
e

ex
ec

u
te

s
in

p
ar

al
le

l;

n
o

d
ep

en
d
en

ce
 c

ro
ss

-c
h
ec

k
s.

 M
u
lt

it
h
re

ad
in

g
 t

h
e

p
ro

ce
ss

o
r

N
o

ef
fe

ct

fo
r

m
u
lt

ip
ro

g
ra

m
m

ed

w
o
rk

lo
ad

s
(b

u
t

sl
ig

h
t

in
cr

ea
se

in

th

e

O
S

co

d
e)

;
sl

ig
h
t

in
cr

ea
se

if

w

e

p
ar

al
le

li
ze

 a
 p

ro
g
ra

m
.

 F
o
r

cr
ed

it
,

h
ad

to
 m

en
ti

o
n
 t

h
e

in
te

n
d
ed

 w
o
rk

lo
ad

.

 D
ec

re
as

e:
 w

e
ca

n
 a

v
o
id

 i
n
te

rl
o
ck

in
g

o
n

so
m

e
h
az

ar
d
s

b
y

sw
it

ch
in

g

th
re

ad
s.

 In
cr

ea
se

:
ad

d
it

io
n
al

ar

ch
it

ec
te

d

st
at

e,

n
am

el
y
 a

 l
ar

g
er

 r
eg

is
te

r
fi

le
,

m
ay

 b
e

o
n

th
e

cr
it

ic
al

 p
at

h
.

 A
d
d
in

g
 a

 s
in

g
le

-

la
n
e

v
ec

to
r

u
n
it

 D
ec

re
as

e
(i

f
p
ro

g
ra

m
 i

s
v
ec

to
ri

za
b
le

):

o
n
e

v
ec

to
r

in
st

ru
ct

io
n
 e

n
co

d
es

 s
ev

er
al

o
p
er

at
io

n
s.

 In
cr

ea
se

:
v
ec

to
r

in
st

ru
cu

ti
o
n
s

w
il

l

ta
k
e

se
v
er

al
 c

y
cl

es
 t

o
 e

x
ec

u
te

 o
n
 a

si
n
g
le

-l
an

e
im

p
le

m
en

ta
ti

o
n

N
o
 e

ff
ec

t:
 t

h
e

5
-s

ta
g
e

p
ip

el
in

e
w

il
l

st
il

l

co
n
ta

in
 t

h
e

cr
it

ic
al

 p
at

h
.

 (
O

r,
 d

ec
re

as
e:

th
e

v
ec

to
r

u
n
it

 c
an

 b
e

d
ee

p
ly

 p
ip

el
in

ed

an
d
 r

u
n
 a

t
a

h
ig

h
er

 c
lo

ck
 r

at
e

th
an

 t
h
e

co
n
tr

o
l

p
ro

ce
ss

o
r.

)

E
N

D
 O

F
 Q

U
IZ

