Second Midterm Examination
 Wednesday April 62011
 Closed Books and Closed Notes

Question 1 Planar Motion of a System of Two Particles (20 Points)

As shown in Figure 1, a particle of mass m_{1} is at rest and is attached to a fixed point O by a linear spring of stiffness K and unstretched length L_{0}. At time $\mathrm{t}=0$, a particle of mass m_{2} traveling with a velocity vector $v_{0} \mathbf{E}_{x}$ impacts the particle of mass m_{1}. After the collision both particles adhere to each other, and can be considered as a particle of mass $m_{1}+m_{2}$.

Figure 1: A system of two particles: (a) Prior to impact at $t=0$, and (b) following the impact.
(a) (4 Points) Starting from the representation

$$
\begin{equation*}
\mathbf{r}_{1}=r \mathbf{e}_{r}, \tag{1}
\end{equation*}
$$

where \mathbf{e}_{r} is a unit vector pointing from O along the spring to m_{1}, establish representations for the linear momentum \mathbf{G}, kinetic energy T, and acceleration a of the particle of mass $m_{1}+m_{2}$ after the collision.
(b) (4 Points) Show that the velocities of the particle of mass $m_{1}+m_{2}$ immediately following the collision are

$$
\begin{equation*}
\dot{r}(t=0)=0, \quad r_{0} \dot{\theta}(t=0)=\frac{m_{2}}{m_{1}+m_{2}} v_{0} . \tag{2}
\end{equation*}
$$

(c) (4 Points) Verify that the kinetic energy of the system is not conserved during the collision.
(d) (4 Points) Draw a freebody diagram of the particle of mass $m_{1}+m_{2}$ following the collision. Give a clear expression for the spring force acting on the particle.
(e) (4 Points) Consider the system after impact. Starting from $\dot{T}=\mathbf{F} \cdot \mathbf{v}$ for a single particle, show that the total energy E of the particle of mass $m_{1}+m_{2}$ is conserved. In your solution, give a clear expression for E.

As shown in Figure 2, a mechanical system consists of two particles. The particle of mass m_{2} is connected using a pin joint and a rod of length L_{1} to the particle of mass m_{1}. The particle of mass m_{1} is attached by linear spring of stiffness K and unstretched length L_{0} to a fixed point O. Both particles move on a smooth vertical plane.
$\mathbf{e}_{r_{1}}=\cos \left(\theta_{1}\right) \mathbf{E}_{x}+\sin \left(\theta_{1}\right) \mathbf{E}_{y}$

$$
\mathbf{e}_{r_{2}}=\cos \left(\theta_{2}\right) \mathbf{E}_{x}+\sin \left(\theta_{2}\right) \mathbf{E}_{y}
$$

Figure 2: A system of two particles in motion on a smooth vertical plane.
(a) (4 Points) Starting from the representations for the position vectors of m_{1} and m_{2} :

$$
\begin{equation*}
\mathbf{r}_{1}=r \mathbf{e}_{r_{1}}, \quad \mathbf{r}_{2}=\mathbf{r}_{1}+L_{1} \mathbf{e}_{r_{2}} \tag{3}
\end{equation*}
$$

establish an expression for the position vector \mathbf{r} of the center of mass of the system. In addition, establish an expression for the linear momentum \mathbf{G} of the system.
(b) (8 Points) Show that the kinetic energy of the system has the representation

$$
\begin{equation*}
T=\frac{m_{1}+m_{2}}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}_{1}^{2}\right)+\frac{m_{2}}{2} L_{1}^{2} \dot{\theta}_{2}^{2}+\text { missing terms. } \tag{4}
\end{equation*}
$$

For full credit supply the missing terms. (Hint: Notice the definition of $\mathbf{e}_{\theta_{2}}$ shown in Figure 2.) (c) (6 Points) Draw 3 free-body diagrams: one for each of the individual particles and one for the system of particles. In your solution, give clear expressions for the spring force and tension force.
(d) (7 Points) Using the angular momentum theorem, show that $\dot{\mathbf{H}}_{O} \cdot \mathbf{E}_{z}$ depends entirely on the moments due to the gravitational forces on the particles. (Hint: use the identity $(\mathbf{a} \times \mathbf{b})$. $\left.\mathbf{E}_{z}=\left(\mathbf{b} \times \mathbf{E}_{z}\right) \cdot \mathbf{a}\right)$.
(e) (5 Points) Give an expression for the total energy E of the system of particles. Then, starting from the work-energy theorem for a system of particles,

$$
\begin{equation*}
\dot{E}=\mathbf{F}_{n c_{1}} \cdot \mathbf{v}_{1}+\mathbf{F}_{n c_{2}} \cdot \mathbf{v}_{2} \tag{5}
\end{equation*}
$$

show that E is conserved.

QuESTION 2

(4) $\quad \Gamma=r \pm r \Rightarrow\left(m_{1}+m_{2}\right) v=G=\left(m_{1}+m_{2}\right)(\dot{r} \Phi r+r \dot{\theta} \Phi 0)$

$$
\begin{array}{ll}
T= & \frac{1}{2}\left(m_{1}+m_{2}\right)\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \\
\underline{a}= & \left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{e r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbb{\oplus} 0
\end{array}
$$

(b) During Collision G is conserved. at instant g collision $\operatorname{Pr}_{r}=-E_{y}$

$$
\mathbb{C}_{0}=E_{x}
$$

Hence $\quad\left(m_{1}+m_{2}\right)\left(\dot{r} E_{Y}+r \dot{\theta} E_{X}\right)=m_{2} V_{0} E_{X}$

$$
\Rightarrow \quad \dot{r}(0)=0 \quad r_{0} \dot{\theta}(0)=\left(\frac{m_{2}}{m_{1}+m_{2}}\right) v_{0}
$$

d)

$$
\begin{aligned}
& T_{1}=T \text { before collision }=\frac{1}{2} m_{2} v_{0}^{2} \\
& T_{2}=T \text { after collision }=\frac{1}{2}\left(m_{2}+m_{1}\right) r_{0}^{2} \dot{\theta}^{2}(0)=\frac{1}{2} \frac{m_{2}^{2}}{m_{1}+m_{2}} v_{0}^{2} \\
& T_{1}-T_{2}=\frac{1}{2} m_{2} v_{0}^{2}\left(1-\frac{m_{2}}{m_{1}+m_{2}}\right)=\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}} v_{0}^{2}
\end{aligned}
$$

\Rightarrow as $T_{1}>T_{2}$, energy is lost dining the collision.
d)

NEE is optional here (nocredit lost or gained)
(f)

$$
\begin{aligned}
& \dot{T}=\underline{F} \cdot \underline{v}= N E z \cdot \underline{v}-\left(m_{1}+m_{2}\right) g \underline{E} \cdot \underline{v}+\underline{F_{s}} \cdot \underline{v} \\
&=\quad 0-\frac{d}{d t}\left(\left(m_{1}+m_{2}\right) g \underline{E} \cdot \underline{r}\right) \quad-\frac{d}{d t}\left(u_{s}=\frac{1}{2} k\left(r-L_{0}\right)^{2}\right) \\
& \Rightarrow \quad \frac{d}{d t}\left(E=T+\left(m_{1}+m_{2}\right) g E_{y} \cdot \underline{r}+u_{s}\right)=0 \\
& \Rightarrow \quad E \text { conserved. }
\end{aligned}
$$

QUESTION 1

a)

$$
\underline{r}_{2}=r_{1}+L_{1} \underline{E}_{2}
$$

$$
\begin{aligned}
& \underline{r}=\frac{m_{1} r_{1}+m_{2} \underline{r}_{2}}{m_{1}+m_{2}}=\underline{r}_{1}+\left(\frac{m_{2} L_{1}}{m_{1}+m_{2}}\right) 巴_{r_{2}} \\
& \underline{G}=m \underline{v}=m \dot{r}=\left(m_{1}+m_{2}\right) \dot{r}_{1}+m_{2} L_{1} \dot{\theta}_{2} \underline{\theta}_{2} \\
&=\left(m_{1}+m_{2}\right)\left(\dot{r} \underline{Q}_{r_{1}}+r \dot{\theta}_{1} \mathbb{Q} \theta_{1}\right)+m_{2} L_{1} \dot{\theta}_{2} \Psi \theta_{2}
\end{aligned}
$$

b) $T=\frac{1}{2} m_{1} \underline{v}_{1} \cdot \underline{v}_{1}+\frac{1}{2} m_{2} \underline{v}_{2} \cdot \underline{v}_{2}$

$$
\begin{aligned}
& =\frac{1}{2} m_{1} \underline{v}_{1} \cdot \underline{v}_{1}+\frac{1}{2} m_{2}\left(\underline{v}_{1}+L_{1} \dot{\theta}_{2} \mathscr{e}_{2}\right) \cdot\left(\underline{v}_{1}+L_{1} \dot{\theta}_{2} \underline{\mathscr{E}}_{2}\right) \\
& =\frac{1}{2}\left(m_{1}+m_{2}\right) \underline{v}_{1} \cdot \underline{v}_{1}+\frac{1}{2} m_{2} L_{1}^{2} \dot{\theta}_{2}^{2}+\frac{1}{2}\left(2 m_{2}\right)\left(L_{1} \dot{\theta}_{2} \underline{Q}_{2} \cdot \underline{v}_{2}\right)
\end{aligned}
$$

$$
\text { Now } \quad v_{1}=\quad \dot{r} \underline{Q}_{1}+r \dot{\theta}_{1} \Theta_{\theta_{1}} \Rightarrow \underline{v}_{1} \underline{v}_{1}=\dot{r}^{2}+r^{2} \dot{\theta}_{1}^{2}
$$

$$
\underline{v}_{1} \cdot \Phi_{\theta_{2}}=\dot{r} \Phi_{r_{1}} \cdot E_{\theta_{2}}+r \dot{\theta}_{1} \Phi_{\theta_{2}} \cdot E_{\theta_{1}}
$$

$$
=-\dot{r} \sin \left(\theta_{2}-\theta_{1}\right)+r \dot{\theta}_{1} \cos \left(\theta_{2}-\theta_{1}\right)
$$

Hence

$$
\begin{aligned}
T=\quad \frac{1}{2} & \left(m_{1}+m_{2}\right)\left(\dot{r}^{2}+r^{2} \dot{\theta}_{1}^{2}\right)+\frac{1}{2} m_{2} L_{1}^{2} \dot{\theta}_{2}^{2} \\
& +m_{2} L_{1} \dot{\theta}_{2}\left(r \dot{\theta}_{1} \cos \left(\theta_{2}-\theta_{1}\right)-\dot{r} \sin \left(\theta_{2}-\theta_{1}\right)\right)
\end{aligned}
$$

$$
\text { The lost term comes from } \quad 2 m_{2} v_{1} \cdot L_{1} \dot{\theta}_{2} \mathbb{Q} \theta_{2}
$$

$$
\begin{aligned}
\Phi_{\theta_{2}}= & \cos \left(\theta_{2}-\theta_{1}\right) \Phi \theta_{1} \\
& -\sin \left(\theta_{2}-\theta_{1}\right) \Phi \pi_{1}
\end{aligned}
$$

The main error made in this problem was to assume $T=\frac{1}{2}\left(m_{1}+m_{0}\right) v . V$
This assumption in false $T \neq \frac{1}{2}(m,+m) V \cdot V$
c)

$$
\begin{aligned}
& \underline{F}_{s}=-K\left(r-L_{0}\right) \mathscr{P}_{r_{1}} \\
& S_{2}=S_{2} \underline{P r}_{2}=\text { Tension Jurce in Rod. }
\end{aligned}
$$

d)

$$
\begin{aligned}
\underline{H}_{0} \cdot \underline{E}_{z}= & \left(\underline{r}_{1} \times \underline{E}_{1}\right) \cdot \underline{E}_{z}+\left(r_{2} \times \underline{E}_{2}\right) \cdot \underline{E}_{z} \\
= & \left(\underline{r}_{1} \times\left(\underline{F}_{5}+N_{1} E_{z}+m_{1} g E_{x}\right) \cdot \underline{E}_{z}\right. \\
& +\underline{r}_{2} \times\left(N_{2} \underline{E}_{z}+m_{2} g E_{x}\right) \cdot E_{z}+\left(r_{1} \times S_{2}\right) \cdot E_{z} \\
& -\left(\underline{r}_{2} \times \underline{S}_{2}\right) \cdot E_{z} \\
= & \left(\underline{r}_{1} \times m_{1} g E_{x}\right) \cdot E_{z}+\left(\underline{r}_{2} \times m_{2} g E_{x}\right) \cdot E_{z}
\end{aligned}
$$

Notice how the moments due bo $+0 \quad\left(r_{1} \| \underline{F}_{s} ; \quad \frac{r_{1}-r_{2} \| \underline{S}_{2} ; r_{1} \times N_{1} E_{z} \perp E_{z},}{\left(r_{2} \times N_{2} E_{z}\right) 1} \underline{E z}^{\left(r_{z}\right.}\right.$
$S_{\text {a cod }} S_{\text {. }}$
Cancel

$$
\begin{aligned}
&=-\left(m_{1} g E y \cdot r_{1}+m_{2} g E_{y} \cdot r_{2}\right) \\
&=-m_{1} g \sin \theta_{1} r-m_{2} g\left(r \sin \theta_{1}+L \sin \theta_{2}\right) \\
& \neq 0
\end{aligned}
$$

$\Rightarrow \quad H_{0} \cdot E z$ is not conserved.
e)

$$
\begin{aligned}
& E=T+\frac{1}{2} k\left(r_{1}-L_{0}\right)^{2}+m_{1} g E_{x} \cdot r_{1}-m_{2} g E_{x} \cdot r_{2} \\
& \dot{E}=\quad N_{1} \underline{E}_{z} \cdot V_{1}+N_{2} \underline{E}_{z} \cdot \underline{V}_{2}+\underline{S}_{2} \cdot\left(\underline{V}_{1}-\underline{V}_{2}\right) \\
& \begin{array}{ccc}
=0 & 0 & +0 \\
E \text { is conserved. }
\end{array}
\end{aligned}
$$

White the expression so grautidiond potalidencigy - mig Ex. It - mug Ex. -$=-\left(m_{1}+m_{2}\right) g E x \cdot E$ where I io th position vector y the center of mono.

