1. (a) A coordinate system attached to car A is a translating system, in which

$$
\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}
$$

Observe that

$$
\begin{aligned}
& \left(a_{B}\right)_{t}=3 \mathrm{~m} / \mathrm{s}^{2} \\
& \left(a_{B}\right)_{n}=\frac{v_{B}^{2}}{\rho}=\frac{144}{100}=1.44 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Thus

$$
a_{B}=3.33 \mathrm{~m} / \mathrm{s}^{2}
$$

Either from a graphical or analytical solution,

$$
\begin{aligned}
& a_{B / A}=5.32 \mathrm{~m} / \mathrm{s}^{2} \\
& \varphi=62.72^{\circ}
\end{aligned}
$$

(b) A coordinate system attached to B is a rotating system. If $\mathbf{a}_{\text {rel }}$ is the acceleration of car A as observed from car $B, \mathbf{a}_{\text {rel }} \neq-\mathbf{a}_{B / A}$. It can be shown from rigid-body kinematics that $\mathbf{a}_{\text {rel }}$ satisfies

$$
\mathbf{a}_{A}=\mathbf{a}_{B}+\dot{\boldsymbol{\omega}} \times \mathbf{r}_{A / B}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{A / B}\right)+2 \boldsymbol{\omega} \times \mathbf{v}_{\mathrm{rel}}+\mathbf{a}_{\mathrm{rel}}
$$

2. Let T_{1} be the tension in the upper string and T_{2} tension in the lower string. Force balance on each mass gives

$$
\begin{align*}
& 4 m g-T_{1}=4 m \ddot{q}_{1} \tag{1}\\
& 3 m g-T_{2}=3 m \ddot{q}_{3} \tag{2}\\
& m g-T_{2}=m \ddot{q}_{4} \tag{3}
\end{align*}
$$

There are five unknowns $\ddot{q}_{1}, \ddot{q}_{3}, \ddot{q}_{4}, T_{1}$, and T_{2} in three equations. However,

$$
\begin{aligned}
& \ddot{q}_{3}-\ddot{q}_{2}+\left(\ddot{q}_{4}-\ddot{q}_{2}\right)=0 \quad \Rightarrow \quad \ddot{q}_{3}+\ddot{q}_{4}=2 \ddot{q}_{2}=-2 \ddot{q}_{1} \\
& T_{1}=2 T_{2}
\end{aligned}
$$

Upon solution,

$$
\ddot{q}_{1}=\frac{1}{7} g=1.40 \mathrm{~m} / \mathrm{s}^{2}
$$

3. Let position 1 of the block be its initial position at 150 mm above the springs. Suppose position 2 corresponds to deflection x in the two springs. Between positions 1 and 2,

$$
U=\Delta T+\Delta V_{g}+\Delta V_{e}
$$

where the work done by forces other than gravitational and spring forces is

$$
\begin{aligned}
& U=0 \\
& \Delta T=T_{2}-T_{1}=0
\end{aligned}
$$

Define the reference level for measuring potential energy as the level associated with the precompressed springs before impact. Then

$$
\begin{aligned}
\Delta V_{g} & =m g h_{2}-m g h_{1}=m g(-x)-m g(0.15)=-m g(x+0.15) \\
\Delta V_{e} & =2\left(\frac{1}{2} k x_{2}^{2}\right)-2\left(\frac{1}{2} k x_{1}^{2}\right) \\
& =2\left(\frac{1}{2} k(0.075+x)^{2}\right)-2\left(\frac{1}{2} k(0.075)^{2}\right)=k\left[(0.075+x)^{2}-0.075^{2}\right]
\end{aligned}
$$

Thus

$$
\begin{array}{ll}
& U=\Delta T+\Delta V_{g}+\Delta V_{e} \\
\Rightarrow & -m g(x+0.15)+k\left[(0.075+x)^{2}-0.075^{2}\right]=0 \\
\Rightarrow & 5000 x^{2}+651.9 x-14.715=0 \\
\Rightarrow & x=0.0196 \text { or }-0.150
\end{array}
$$

The additional deflection is $x=19.6 \mathrm{~mm}$.

