Yildiz Midterm 2, Fall 2010

$$
\begin{gathered}
\text { (1) } \quad F_{G 1,2}=G \frac{M M}{l^{2}}=\frac{G M^{2}}{l^{2}} \\
F_{61,2} V_{G 1,3} \quad F_{G 1,3}=G \frac{M M}{l^{2}}=\frac{G M^{2}}{l^{2}} \\
F_{R}=F_{G 1,2} \cos 30^{\circ}+F_{G 1,3} \cos 30^{\circ} \\
F_{R}=\frac{G M^{2}}{l^{2}}\left(\frac{\sqrt{3}}{2}\right)+\frac{G M^{2}}{2}\left(\frac{\sqrt{3}}{2}\right) \\
F_{R}=\frac{\sqrt{3} G M^{2}}{l^{2}}
\end{gathered}
$$

$$
\cos 30^{\circ}=\frac{l / 2}{R} \Rightarrow R=\frac{l}{2 \cos 30^{\circ}}=\frac{l}{\sqrt{3}}
$$

$$
\begin{aligned}
\sum F_{R} & =m a_{R} \\
F_{R} & =M \frac{V^{2}}{R} \\
\frac{\sqrt{3} G M^{2}}{l^{2}} & =M \frac{V^{2}}{(l / \sqrt{3})} \\
V^{2} & =\frac{G M}{l} \\
V & =\sqrt{\frac{G M}{l}}
\end{aligned}
$$

2.) a.)

$$
\begin{aligned}
& E_{i}=u_{\text {sprmg }}=\frac{1}{2} k x^{2} \\
& E_{A}=\underbrace{\frac{1}{2} m V_{A}^{2}}_{K_{A}}+m g^{2 r}
\end{aligned}
$$

Energy is conserved: $\frac{d E}{d t}=0 .+2$

$$
\begin{aligned}
& E_{i}=E_{A} \Rightarrow \frac{1}{2} k x^{2}=K_{A}+m g 2 r \\
& K_{A}=\frac{1}{2} k x^{2}-m g 2 r+3
\end{aligned}
$$

b.) $W=\int \vec{F} \cdot d \vec{r}+2$

In this case \vec{F} is paralled to $d \vec{r}$, so the work is positive. +1

$$
w=\int_{0}^{x} k x^{\prime} d x^{\prime}=\frac{1}{2} k x^{2}+2
$$

$$
\begin{aligned}
& \text { c.) } \begin{array}{l}
a_{c}=\frac{V_{A}^{2}}{r} \downarrow \\
+1
\end{array} \underbrace{m}+\begin{array}{l}
N+m g=m \frac{V_{A}^{2}}{r} \\
m
\end{array} \quad \text { Given: } N=2 m g \\
& 3 m g=m \frac{V_{A}^{2}}{r} \\
& V_{A}^{2}=3 g r, \quad V_{A}=\sqrt{3 g r}+2
\end{aligned}
$$

d.)

$$
\begin{aligned}
& K_{A}=\frac{1}{2} k x^{2}-m g 2 r=\frac{1}{2} m v_{A}^{2} \\
& \frac{1}{2} k x^{2}=\frac{1}{2} m(3 g r)+m g 2 r \\
& x^{2}=\frac{7 m g r}{k} \\
& x=\sqrt{\frac{7 m g r}{k}+2}
\end{aligned}
$$

4.)

Yildiz Midterm 2, Fall 2010

$$
\begin{aligned}
& +5\left\{\begin{array}{c}
m_{1} v_{1}+m_{b} v_{2}=0 \\
v_{2}-v_{1}=v_{b}
\end{array}\right. \\
& v_{1}^{+1}=\frac{-m_{b} v_{b}}{m_{1}+m_{b}} \quad v_{2}=\frac{m_{1} v_{b}}{m_{1}+m_{b}} \\
& \left.\begin{array}{l}
v_{1} \leftarrow \underset{m_{6}}{\substack{m_{1} \\
v_{2} \\
v_{3}}}=\frac{\left(m_{6}+m_{2}\right) v_{3}}{m_{6}+m_{2}} v_{2}=\frac{m_{1} m_{6} v_{6}}{\left(m_{1}+m_{b}\right)\left(m_{2}+m_{b}\right)}
\end{array}\right\} \\
& v_{1} \stackrel{m}{1}_{O_{1}^{\prime}}^{v_{4}} \stackrel{m_{6}}{m_{0}^{m_{2}}} 0^{m^{2}} \rightarrow v_{5} \\
& +5\left\{\begin{aligned}
\left(m_{b}+m_{2}\right) v_{3} & =m_{6} v_{4}+m_{2} v_{5}=m_{6} v_{2} \\
v_{5}-v_{4} & =v_{b}
\end{aligned}\right. \\
& \frac{m_{1} m_{b}}{m_{1}+m_{b}} v_{b}=m_{b}\left(v_{5}-v_{b}\right)+m_{2} v_{5} \\
& v_{5}=\frac{m_{b}\left(2 m_{1}+m_{b}\right)}{\left(m_{1}+m_{b}\right)\left(m_{2}+m_{5}\right)} v_{b}, v_{4}=-\frac{v_{b}}{m_{2}+m_{6}}\left(m_{2}-\frac{m_{1} m_{b}}{m_{1}+m_{b}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =0 \xrightarrow{v_{5}} \\
& +3 \quad m_{1} v_{1}+m_{b} v_{4}=\left(m_{1}+m_{b}\right) v_{6} \\
& v_{6}=\frac{m_{1}}{m_{1}+m_{b}} v_{1}+\frac{m_{b}}{m_{1}+m_{b}} v_{4} \\
& v_{6}=-\frac{m_{2} m_{b}\left(2 m_{1}+m_{b}\right)}{\left(m_{1}+m_{b}\right)^{2}\left(m_{2}+m_{6}\right)} v_{6}
\end{aligned}
$$

Final valocitites:
Astronaut 1: $V_{6}=-\frac{m_{2} m_{b}\left(2 m_{1}+m_{6}\right)}{\left(m_{1}+m_{6}\right)^{2}\left(m_{2}+m_{6}\right)} V_{b} \quad$ Astromat 2: $V_{5}=\frac{m_{6}\left(2 m_{1}+m_{6}\right)}{\left(m_{1}+m_{6}\right)\left(m_{2}+m_{6}\right)} V_{b}$

$$
+2+2
$$

$5_{p}+\quad$ a. $E_{2}+E_{1}=W_{f} \quad E_{2}$ be fore hitting spring,

$$
\begin{aligned}
& \text { a. } \begin{array}{l}
\left.E_{2}+\frac{1}{2} m v_{1}^{2}\right][m g d]=1-f d \\
V=\sqrt{\frac{2(m g d-f d)}{m}} \\
=\sqrt{\frac{2[(1800)(9.8)(3.7)-(4400)(3.7)]}{1800}}=7.38 \mathrm{~m} / \mathrm{s}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& m=1800 \mathrm{~kg} \\
& d=3.7 \mathrm{~m} \\
& k=150000 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Gp+ b. E_{3} at maximum compression

$$
f=4400 \mathrm{~N}
$$

$$
\begin{aligned}
& E_{3}-E_{2}=W \\
& {\left[\frac{1}{2} k x^{2}+m g(-x)\right]-\left[\frac{1}{2} m v^{2}\right]=-f x} \\
& a=\frac{1}{2} k, \quad b=f-m g, \quad c=-\frac{1}{2} m v^{2} \\
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=0.725,0.901 \mathrm{~m}
\end{aligned}
$$

Gp+ C, E_{4} after bouncing back up use $h=0$ at lowest position of cab

$$
\begin{aligned}
& E_{4}-E_{3}=w \\
& m g d^{\prime}-\frac{1}{2} k x^{2}=-f d^{\prime} \\
& d^{\prime}=\left(\frac{1}{2} k x^{2}\right) /(m g+f)=2.76 \mathrm{~m}
\end{aligned}
$$

d. at rest $\Rightarrow a=0 \Rightarrow \sum F=0$

$$
\begin{aligned}
& f_{p+s .} E_{5}=a^{t} \text { the end } \\
& E_{5}-E_{1}=W \\
& \frac{1}{2} k_{x_{f}}^{2}+m g\left(-x_{f}\right)-m g d=-f D \\
& D=\frac{m g\left(d+x_{f}\right)-\frac{1}{2} k_{x_{f}}^{2}}{f}=15.07 \mathrm{~m}
\end{aligned}
$$

Yildiz problem 5

Claire Zukowski

November 5, 2010
(a) We start with the rocket equation,

$$
\begin{equation*}
\sum_{i} \vec{F}_{i, \mathrm{ext}}=M(t) \frac{d \vec{v}}{d t}-\underbrace{(\vec{u}-\vec{v})}_{\equiv v_{r e l}} \frac{d m}{d t} \tag{0.1}
\end{equation*}
$$

Since there are no external forces, this gives (dropping the vector signs since the motion is horizonal)

$$
\begin{equation*}
\frac{d v}{d t}=\frac{v_{r e l}}{M} \frac{d m}{d t} \tag{0.2}
\end{equation*}
$$

Rewriting in terms of $u=v_{W}$ and $v=v(t)$, this becomes

$$
\begin{equation*}
\frac{d v}{d t}=\frac{v_{W}-v(t)}{M(t)} \frac{d m}{d t} \tag{0.3}
\end{equation*}
$$

Note: If you didn't remember the rocket equation, you could have derived it as follows. At time t, let the cart have mass $M(t)$ and velocity \vec{v}, and let an infinitesimal length of water hitting the cart have mass Δm and velocity \vec{u}. At time $t+\Delta t$ let the combined system have mass $M(t)+\Delta m$ and velocity $\vec{v}+\Delta \vec{v}$. The change in momentum between t and $t+\Delta t$ is

$$
\begin{align*}
\Delta p= & (M(t)+\Delta m)(v+\Delta v)-(\Delta m) u-M(t) v \\
& =M(t) \Delta v-(u-v) \Delta m-\Delta m \Delta v \tag{0.4}
\end{align*}
$$

To find the force we divide by Δt and take the limit as $t \rightarrow 0$. In this limit the last term, which will still be proportional to an infinitesimal quantity even after dividing by Δt, will vanish. Thus we are left with

$$
\begin{equation*}
\sum_{i} \vec{F}_{i, \mathrm{ext}}=\frac{d \vec{p}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{p}}{\Delta t}=M(t) \frac{d \vec{v}}{d t}-\underbrace{(\vec{u}-\vec{v})}_{\equiv v_{r e l}} \frac{d m}{d t} \tag{0.5}
\end{equation*}
$$

(b) By the chain rule we know that

$$
\begin{equation*}
\frac{d m}{d t}=\frac{d m}{d l} \frac{d l}{d t}=\lambda v_{r e l} \Rightarrow \frac{d m}{d t}=\lambda\left(v_{W}-v(t)\right) \tag{0.6}
\end{equation*}
$$

Note that $d l$ is the infinitesimal length of water hitting the cart, so that $d l / d t$ is $v_{r e l}$ as opposed to a rest frame velocity (intuitively, if I go faster less of the water will hit me). You had to give at least a short explanation to get full credit for this.

