Midterm 2

March 7, 2011
(90 min, closed book)
Name: \qquad
SID: \qquad
TA Name: \qquad

- There are 40 multiple choice questions worth 3 points each.
- Only answers on the Scantron form will be graded.
- You can tear off the equation sheet and the periodic table for your convenience.
- Scantron must be properly filled in and cannot contain any smudges or other marks. Scantrons will not be rescanned!
- You can use the page margin or the back of the pages as scratch paper.
- You can take the exam booklet with you after the exam.

Quantum:

$$
\begin{aligned}
& \mathrm{E}=\mathrm{h} \nu \\
& \lambda \nu=\mathrm{c} \\
& \lambda_{\text {deBroglie }}=\mathrm{h} / \mathrm{p}=\mathrm{h} / \mathrm{mv} \\
& \mathrm{E}_{\text {kin }}(\mathrm{e}-)=\mathrm{h} \nu-\Phi=\mathrm{h} \nu-\mathrm{h} v_{0} \\
& E_{n}=-\frac{\mathrm{Z}^{2}}{n^{2}} R_{\infty} \\
& \Delta \mathrm{x} \Delta \mathrm{p} \sim \mathrm{~h} \\
& \mathrm{p}=\mathrm{mv} \\
& \mathrm{E}_{\mathrm{n}}=\mathrm{h}^{2} \mathrm{n}^{2} / 8 \mathrm{~mL}^{2} ; \mathrm{n}=1,2,3 . \ldots \\
& \mathrm{E}_{\mathrm{v}}=(\mathrm{v}+1 / 2) \mathrm{hA} / 2 \pi ; \mathrm{A}=(\mathrm{k} / \mathrm{m})^{1 / 2} \\
& \mathrm{E}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1) \mathrm{hB} ; \mathrm{B}=\mathrm{h} / 8 \pi^{2} \mathrm{I} ; \mathrm{I}=2 \mathrm{mr}^{2} \\
& \mathrm{~m}=\mathrm{m}_{\mathrm{A}} \mathrm{~m}_{\mathrm{B}} /\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right)
\end{aligned}
$$

Ideal Gas:

$P V=n R T$
$E_{k i n}=\frac{3}{2} R T$
$\mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 R T}{\mathrm{M}}}$

Constants:

$\mathrm{N}_{0}=6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{R}_{\infty}=2.179874 \times 10^{-18} \mathrm{~J}$
$\mathrm{R}_{\infty}=3.28984 \times 10^{15} \mathrm{~Hz}$
$\mathrm{k}=1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
$\mathrm{h}=6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$\mathrm{m}_{\mathrm{e}}=9.101939 \times 10^{-31} \mathrm{~kg}$
$\mathrm{c}=2.99792 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{T}(\mathrm{K})=\mathrm{T}(\mathrm{C})+273.15$
$\mathrm{F}=96,485 \mathrm{C} / \mathrm{mol}$
$1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$
Gas Constant:
$\mathrm{R}=8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{R}=8.20578 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}$
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ torr ≈ 1 bar $1 \mathrm{~L} \mathrm{~atm} \approx 100 \mathrm{~J}$

Thermodynamics:

$$
\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ}
$$

$$
\Delta \mathrm{H}^{\circ}=\sum \Delta \mathrm{H}_{\mathrm{f}}^{\circ} \text { (products) }-\sum \Delta \mathrm{H}_{\mathrm{f}}^{\circ} \text { (reactants) }
$$

$$
\Delta \mathrm{S}^{\circ}=\sum \mathrm{S}^{\circ} \text { (products) }-\Sigma \mathrm{S}^{\circ} \text { (reactants) }
$$

$$
\Delta \mathrm{G}^{\circ}=\sum \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (products) }-\sum \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (reactants) }
$$

$$
\mathrm{S}=\mathrm{k}_{\mathrm{B}} \ln \mathrm{~W}
$$

$$
\Delta \mathrm{S}=\mathrm{q}_{\mathrm{rev}} / \mathrm{T}
$$

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}
$$

$$
\mathrm{w}=-\mathrm{P}_{\mathrm{ext}} \Delta \mathrm{~V}
$$

for $\mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{cC}+\mathrm{dD}$
$Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \quad$ At equilibrium, $\mathrm{Q}=\mathrm{K}$
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
$\mathrm{G}=\mathrm{G}^{\circ}+\mathrm{RT} \ln (\mathrm{a}) ; \mathrm{a}=\operatorname{activity}=\gamma \mathrm{P} / \mathrm{P}^{\circ}$ or $\gamma[\mathrm{A}] /[\mathrm{A}]^{\circ}$
$\Delta \mathrm{G}^{\circ}=-\mathrm{RTln} \mathrm{K}$
$\Delta G^{\circ}=-n F \Delta \epsilon^{\circ}$
$\Delta \mathrm{C}=\Delta \mathrm{E}^{\mathrm{o}}-(\mathrm{RT} / \mathrm{nF}) \ln \mathrm{Q}$
$\ln K=-\frac{\Delta H^{\circ}}{R} \frac{1}{T}+\frac{\Delta S^{\circ}}{R}$
$\Delta \mathrm{T}=\mathrm{ik}_{\mathrm{b}, \mathrm{f}} \mathrm{m}$
$\Pi=$ iMRT
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{\circ}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{\circ}$

Acid Base:

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pX}=-\log \mathrm{X} \\
& p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
\end{aligned}
$$

Kinetics:

$[\mathrm{A}]_{\mathrm{t}}=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{kt}}$
$\ln [\mathrm{A}]_{\mathrm{t}}=\ln [\mathrm{A}]_{0}-\mathrm{kt}$
$\mathrm{t}_{1 / 2}=\ln 2 / \mathrm{k}$
$1 /[\mathrm{A}]_{\mathrm{t}}=1 /[\mathrm{A}]_{0}+\mathrm{kt}$
$\mathrm{k}=\mathrm{A} \mathrm{e}^{(-\mathrm{Ea} / \mathrm{RT})}$
$\ln \left(\mathrm{k}_{1} / \mathrm{k}_{2}\right)=\mathrm{E}_{\mathrm{a}} / \mathrm{R}\left(1 / \mathrm{T}_{2}-1 / \mathrm{T}_{1}\right)$
$t_{1 / 2}=1 /[A]_{0} k$
$\mathrm{t}_{1 / 2}=[\mathrm{A}]_{0} / \mathrm{kt}$

1. One $4 p$ orbital can hold \qquad electrons.
A. 1
B. 2
C. 6
D. 10
E. none of these

ANS: B
2. In many-electron atoms, the energies of the orbitals depend upon
A. n
B. l
C. m_{l}
D. n and l
E. n and m_{l}

ANS: D
3. Which of the following is not a p-block element?
A. K
B. Sn
C. Sb
D. At
E. More than one of these is not p-block elements.

ANS: A

4. The electron configuration for sulfur is
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
E. none of these

ANS: C
5. All of the alkaline earth metals have the electron configuration \qquad in their valence orbitals.
A. $n s^{1}$
B. $n s^{2}$
C. $n s^{2} n p^{1}$
D. $n s^{2} n p^{5}$
E. none of these

ANS: B
6. If the element with the electron configuration $[\mathrm{Rn}] 5 f^{14} 6 d^{10} 7 s^{2} 7 p^{4}$ existed, it would belong to which group?
A. boron group
B. carbon group
C. nitrogen group
D. oxygen group
E. halogens

ANS: D
7. For which of the following processes is $\Delta E=I E_{1}$?
A. $\mathrm{X}^{+}(g)+e^{-} \rightarrow \mathrm{X}(g)$
B. $\mathrm{X}(s) \rightarrow \mathrm{X}^{+}(s)+\mathrm{e}^{-}$
C. $\mathrm{X}(\mathrm{g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{-}$
D. $\mathrm{X}^{+}(g) \rightarrow \mathrm{X}^{2+}(g)+\mathrm{e}^{-}$
E. none of these

ANS: C
8. Which of the following theories correctly predicts the magnetic properties of molecular oxygen?
A. molecular orbital theory
B. valence bond theory
C. VSEPR theory
D. all of these
E. none of these

ANS: A
9. Which molecule contains a triple bond?
A. $\mathrm{C}_{2} \mathrm{H}_{4}$
B. CCl_{4}
C. $\mathrm{H}_{2} \mathrm{O}$
D. N_{2}
E. O_{2}

ANS: D
10. Which element is the most electronegative?
A. phosphorus
B. silicon
C. carbon
D. nitrogen
E. oxygen

ANS: E
11. How many additional bonds are needed to complete the structure of the cyanide ion?: $\mathrm{C}-\mathrm{N}^{-}$
A. 0
B. 1
C. 2
D. 3
E. 4

ANS: C
12. Rank the following in order of decreasing radius: $\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Cs}^{+}, \mathrm{Rb}^{+}$
A. $\mathrm{K}^{+}>\mathrm{Na}^{+}>\mathrm{Cs}^{+}>\mathrm{Rb}^{+}$
B. $\mathrm{Rb}^{+}>\mathrm{Cs}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}$
C. $\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
D. $\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Na}^{+}$

ANS: D
13. Select the element which never forms more than one bond in a Lewis Dot structure.
A. O
B. C
C. N
D. Al
E. H

ANS: E
14. Which bond is least polar?
A. C-C
B. $\mathrm{C}-\mathrm{N}$
C. $\mathrm{N}-\mathrm{H}$
D. C-F
E. C-O

ANS: A
15. Which of the following Lewis structures does not contain an error?
A. $\mathrm{H}-\mathrm{C}=\mathrm{N}$:
B. $\mathrm{H}-\ddot{\mathrm{C}}=\ddot{\mathrm{C}}-\mathrm{H}$
C. $\mathrm{H}-\ddot{\mathrm{Br}} \mathrm{r}$:
D. They all do
E. None of them do

ANS: C
16. Write the singly bonded Lewis dot structure for BF_{3}. Which of the following statements best describes this structure?
A. It obeys the octet rule on all atoms.
B. It has less than an octet on at least one atom.
C. It has a lone pair of electrons on the boron atom.
D. It has less than an octet of electrons on all atoms.
E. It exceeds the octet rule.

ANS: B
17. What is the formal charge on the nitrogen atom in the Lewis structure, $[: C \equiv N-O:!]^{-}$?
A. -2
B. -1
C. +1
D. +2
E. none of these

ANS: C
18. Which of the following should have a dipole moment?
A. CO_{2}
B. BCl_{3}
C. BrF_{3}
D. all of these
E. none of these

ANS: C
19. According to the VSEPR theory, which of the following should not be linear?
A. BeH_{2}
B. SO_{2}
C. CS_{2}
D. NNO
E. ICl

ANS: B
The following 2 questions are about the carbon atoms in this compound:
20. The molecular geometry at each of the carbons is \qquad _.
A. linear
B. trigonal planar
C. tetrahedral
D. trigonal pyramidal
E. bent

ANS: B
21. The hydridization at each of carbons is \qquad .
A. sp
B. sp^{2}
C. sp^{3}
D. $s p^{3} d$
E. $\mathrm{sp}^{3} \mathrm{~d}^{2}$

ANS: B

For the next two questions, assume the ionization energy of K is $417 \mathrm{~kJ} / \mathrm{mol}$ and the electron affinity of F is $-325 \mathrm{~kJ} / \mathrm{mol}$
22. What is the approximate net energy change in producing K^{+}from K and F^{-}from $\mathrm{F}(\mathrm{kJ} / \mathrm{mol})$
A. 742
B. 147
C. -742
D. 92
E. -92

ANS: D
23. What is a possible net energy change in making the KF molecule?
A. 92
B. 742
C. -241
D. 0
E. 147

ANS: C
24. How many carbons in the structure shown below are NOT chiral?

A. 6
B. 5
C. 4
D. 3
E. 2

ANS: E
25. Label the hybridization at C\#1, C\#2, C\#3, and C\#4 in the molecule.

	C1	C2	C3	C4
A.	sp	sp	sp^{3}	$\mathrm{sp}^{3} \mathrm{~d}$
B.	sp	sp	sp^{2}	sp^{3}
C.	sp	sp^{2}	sp^{2}	sp^{2}

D. $\mathrm{sp}_{3}^{2} \quad \mathrm{sp}_{3}^{2} \quad \mathrm{sp}_{3}^{3} \quad \mathrm{sp}_{3}^{3}$
E. $s p^{3} \quad \mathrm{sp}^{3} \quad \mathrm{sp}^{3} \quad \mathrm{sp}^{3}$

ANS: B
Consider the molecules and molecular ions of $\mathrm{F}_{2}, \mathrm{O}_{2}$ and N_{2} to answer the following three questions (The relative energies of the molecular orbitals for each is shown. You need to fill in the electrons by yourself).

26. Which of the following, according to molecular orbital theory, has the strongest bond?
A. $\mathrm{F}_{2}{ }^{2+}$
B. $\mathrm{F}_{2}{ }^{-}$
C. $\mathrm{O}_{2}{ }^{2-}$
D. $\mathrm{O}_{2}{ }^{-}$
E. N_{2}

ANS: E.
27. Which of the following bonds gets weaker when the species shown are ionized?
A. F_{2}
B. $\mathrm{F}_{2}{ }^{-}$
C. $\mathrm{O}_{2}{ }^{+}$
D. N_{2}
E. $\mathrm{N}_{2}{ }^{-}$

ANS: D.
28. Which of the following is the most paramagnetic?
A. F_{2}
B. $\mathrm{F}_{2}{ }^{2+}$
C. $\mathrm{O}_{2}{ }^{-}$
D. $\mathrm{O}_{2}{ }^{+}$
E. $\mathrm{N}_{2}{ }^{2+}$

ANS: B
29. Determine the hybridization around the central atom in SF_{s}^{+}
A. sp
B. sp^{2}
C. sp^{3}
D. $\mathrm{sp}^{3} \mathrm{~d}$
E. $s p^{3} d^{2}$

ANS: D
30. Which is the energy diagram for the arsenic hybrid atomic orbitals in AsF_{5} after hydridization?

$$
\uparrow \underset{\frac{3 \mathrm{p}}{4 \mathrm{~s}}}{\frac{3 \mathrm{~d}}{4}-\longrightarrow} \longrightarrow ? ? ?
$$

A)
B)
C)
D)

Answer: The solution to this problem lies in realizing that As atomic orbitals must be hybridized to sp3d in order to form bonds to 5 fluorine atoms. After hybridization, there should be 5 orbitals with equal energy corresponding to the $\mathrm{sp}^{3} \mathrm{~d}$ orbitals and 4 d orbitals remaining that were not hybridized. The only diagram that shows this combination of hybridized and unhybridized orbitals is choice A.
31. Which of the following species does not have resonance structures?
A. CO_{3}^{2-}
B. SO_{2}
C. $\mathrm{H}_{2} \mathrm{O}$
D. NO_{3}^{-}
E. O_{3}

For the next three questions, consider the following set of five orbitals:

32. How many nodes are displayed in orbital ' D '?
A. 0
B. 1
C. 2
D. 3
E. 4

ANS: B
33. What is the best label for orbital 'A'?
A. 1 s
B. 2 s
C. 2 p
D. 3 s
D. 3p

ANS: C
34. Which orbital has the highest energy?
A. A
B. B
C. C
D. D
E. E

ANS: C
35. The apparatus pictured below is used to conduct the following experiment. After complete evacuation of both chambers, valve \mathbf{b} is closed, and a sample of $\mathrm{CO}_{2}(g)$ is introduced through valve \mathbf{a}. When the pressure in the 1.650-L reservoir reaches 4.500 atm , valve \mathbf{a} is closed. If valve b is now opened, allowing gas to flow into the 6.850-L reservoir, the final pressure of CO_{2} in the apparatus (assuming no temperature change) will be

A. 0.8735 atm
B. 0.9226 atm
C. 1.084 atm
D. 1.428 atm
E. none of these

ANS: A
36. How many moles of methane $\left(\mathrm{CH}_{4}\right)$ are contained in a $35.0-\mathrm{L}$ vessel at STP?
A. 0.488
B. 0.975
C. 1.95
D. 3.90
E. none of these

ANS: E
37. In a mixture of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$, the mole fraction of $\mathrm{CO}(\mathrm{g})\left(X_{\mathrm{CO}}\right)$ is 0.115 . If the pressure of the mixture is 2.50 atm , the partial pressure of CO_{2} is
A. 0.288 atm
B. 1.25 atm
C. 2.21 atm
D. impossible to determine
E. none of these

ANS: C
38. An absorbance of 0.234 at 520 nm is measured for a 0.0100 M solution of compound X . The cuvette has a pathlength of 1.00 cm . What is the concentration of the compound X if the absorbance is 0.113 ?
A. 0.987 M
B. 0.113 M
C. 0.00520 M
D. 0.00482 M
E. 1.00 M

ANS: D
39. $\mathrm{C}_{2} \mathrm{H}_{2}$ is a compound you investigated in the experiment "How the nose knows". Each molecule of this compound contains
A. 2σ bonds and 2π bonds
B. 2σ bonds and 3π bonds
C. 3σ bonds and 2π bonds
D. 2σ bonds and 1π bond
E. 5σ bonds and 0π bond

ANS: C
40. In the experiment "Determination of the molarity of a strong acid", if you titrated past the end point until the indicator turned yellow, how would that affect the calculated concentration of the HCl ?
A. the concentration would be lower than the true value
B. the concentration would be higher than the true value
C. the concentration is not affected
D. the exact amount of HCl used is needed to decide how it affect the calculated concentration
E. none of the above is correct

ANS: A

