Math 104: Midterm 1 solutions

1. Consider the two sets

$$
A=(0,1] \cup[4, \infty), \quad B=\left\{\frac{1}{2 n}: n \in \mathbb{N}\right\}
$$

For each set, determine its maximum and minimum if they exist. For each set, determine its supremum and infimum. Detailed proofs are not required, but you should justify your answers.

Answer: Since the lower limit of A is an open interval, it does not have a minimum, however $\inf A=0$. Since A is not bounded above, it does not have a maximum. $\sup A=\infty$ for sets not bounded above.
Since B has no smallest element, the minimum does not exist. However, since the fractions become arbitrarily close to $0, \inf B=0$. The maximum is given by $\max B=$ $1 / 2$, attained for the case when $n=1$, and hence $\sup B=\max B=1 / 2$.
2. Consider the following series, defined for $n \in \mathbb{N}$:

$$
\sum \frac{6^{n}}{n^{n}}, \quad \sum \frac{1}{n+1 / 2}
$$

For each series, determine whether it converges or diverges. If you make use of any of the theorems for determining series properties, you should state which one you use.

Answer: For the first sequence, make use of the root test where $a_{n}=6^{n} / n^{n}$. Then

$$
\left(a_{n}\right)^{1 / n}=\frac{6}{n}
$$

which converges to zero as $n \rightarrow \infty$. Hence $\sum 6^{n} / n^{n}$ converges. For the second sequence, since $n+1 / 2 \leq 2 n$ for all $n \in \mathbb{N}$, then

$$
\frac{1}{n+1 / 2} \geq \frac{1}{2 n}
$$

for all $n \in \mathbb{N}$. Since $\sum \frac{1}{n}$ diverges, so does $\sum \frac{1}{2 n}$, and hence by the comparison test, $\sum 1 /(n+1 / 2)$ does also.
3. Let S be a non-empty bounded subset of \mathbb{R}. Define $T=\{|x|: x \in S\}$ to be the set of all absolute values of elements in S. Prove that $\sup T=\max \{\sup S,-\inf S\}$.

Answer: Choose an element $t \in T$. Then either

- $t \in S$. Hence $t \leq \sup S$.
- There exists $s \in S$ such that $s=-t$. Hence $s \geq \inf S$, and therefore $t \leq-\inf S$.

Thus either $t \leq \sup S$ or $t \leq-\inf S$ so $t \leq \max \{\sup S,-\inf S\}$. Hence it is an upper bound.

Now suppose that l is an upper bound for T. Then $l \geq t$ for all elements $t \in T$. Hence $l \geq|s|$ for all elements $s \in S$, and thus

$$
-l \leq s \leq l
$$

for all elements in s, from which the following two deductions can be made:

- Since $s \leq l$ for all s, then $l \geq \sup S$ since $\sup S$ is the least upper bound for S.
- Since $-l \leq s$ for all s, then $-l \leq \inf S \operatorname{since} \inf S$ is the greatest lower bound for S. Hence $l \geq-\inf S$.

These two results show that $l \geq \max \{\sup S,-\inf S\}$. Hence $\max \{\sup S,-\inf S\}$ is an upper bound for T and it is the least upper bound, so it must be sup T.
4. Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be two sequences defined for $n \in \mathbb{N}$. Suppose $\lim s_{n}=\infty$, and $\lim \sup t_{n}<0$. Prove that $\lim s_{n} t_{n}=-\infty$.
Note: make sure to consider both cases when $\lim \sup t_{n}$ is a real number, and when $\lim \sup t_{n}$ is $-\infty$.

Answer: Define $v_{N}=\sup \left\{s_{n}: n>N\right\}$. There are two cases:

- $\lim \sup t_{n}=-q$ for some $q>0$. Then there exists a K_{1} such that $\left|v_{N}-(-q)\right|<$ $q / 2$ for all $N>K_{1}$. Hence $v_{K_{1}+1}<(-q)+(q / 2)=-q / 2$, and thus $t_{n}<-q / 2$ for all $n>K_{1}+1$. For this case, define $\lambda=-q / 2$.
- $\limsup t_{n}=-\infty$. Then there exists a K_{1} such that $v_{N}<-1$ for all $N>K_{1}$. Hence $v_{K_{1}+1}<-1$, and thus $t_{n}<-1$ for all $n>K_{1}+1$. For this case, define $\lambda=-1$.

Now consider the sequence $s_{n} t_{n}$. Pick $M<0$. Then since $\lim s_{n}=\infty$, there exists a K_{2} such that $n>K_{2}$ implies that $s_{n}>M / \lambda$.
Now suppose $n>\max \left\{K_{1}+1, K_{2}\right\}$. Then $s_{n}>M / \lambda$ and $t_{n}<\lambda$, so $s_{n} t_{n}<M$. This is true for any $M<0$, so $\lim s_{n} t_{n}=-\infty$.

