Math 104: Midterm 1

1. Consider the two sets

$$
A=(0,1] \cup[4, \infty), \quad B=\left\{\frac{1}{2 n}: n \in \mathbb{N}\right\}
$$

For each set, determine its maximum and minimum if they exist. For each set, determine its supremum and infimum. Detailed proofs are not required, but you should justify your answers.
2. Consider the following series, defined for $n \in \mathbb{N}$:

$$
\sum \frac{6^{n}}{n^{n}}, \quad \sum \frac{1}{n+1 / 2}
$$

For each series, determine whether it converges or diverges. If you make use of any of the theorems for determining series properties, you should state which one you use.
3. Let S be a non-empty bounded subset of \mathbb{R}. Define $T=\{|x|: x \in S\}$ to be the set of all absolute values of elements in S. Prove that $\sup T=\max \{\sup S,-\inf S\}$.
4. Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be two sequences defined for $n \in \mathbb{N}$. Suppose $\lim s_{n}=\infty$, and $\lim \sup t_{n}<0$. Prove that $\lim s_{n} t_{n}=-\infty$.
Note: make sure to consider both cases when $\lim \sup t_{n}$ is a real number, and when $\lim \sup t_{n}$ is $-\infty$.

