Physics 137A: Midterm Solutions

February 23, 2011

1
(2)

Let us first solve for the energy eigenstates with $E>0$.

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}=E \psi, x<-a \\
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}=\left(E+\frac{40 \hbar^{2}}{m a^{2}}\right) \psi,-a<x<0
\end{gathered}
$$

The general solution is

$$
\psi(x)=\left\{\begin{array}{lr}
A e^{i k x}+B e^{-i k x} & x<-a \\
C e^{i \kappa x}+D e^{-i \kappa x} & -a<x<0 \\
0 & x>0
\end{array}\right.
$$

in which $k=\sqrt{2 m E} / \hbar$ and $\kappa=\sqrt{2 m\left(E+40 \hbar^{2} / m a^{2}\right)} / \hbar$. Enforcing continuity of the wavefunction at $x=0$ and $x=-a$ yields

$$
C+D=0
$$

and

$$
A e^{-i k a}+B e^{i k a}=C e^{-i \kappa a}+D e^{i \kappa a}=C\left(e^{-i \kappa a}-e^{i \kappa a}\right)
$$

respectively. We may also insist on continuity of the derivative at $x=-a$ (but not at $x=0$). This gives

$$
i k\left(A e^{-i k a}-B e^{i k a}\right)=i \kappa\left(A e^{-i k a}+B e^{i k a}\right) \frac{e^{-i \kappa a}-e^{i \kappa a}}{e^{-i \kappa a}+e^{i \kappa a}}
$$

Since the scattering state wavefunction is non-normalizable, we cannot go any further. Note that all values of $E>0$ are allowed.
Now let's consider solutions with $-\frac{40 \hbar^{2}}{m a^{2}}<E<0$. The general solution is

$$
\psi(x)=\left\{\begin{array}{lr}
A e^{k x} & x<-a \\
C e^{i \kappa x}+D e^{-i \kappa x} & -a<x<0 \\
0 & x>0
\end{array}\right.
$$

in which $k=\sqrt{-2 m E} / \hbar$ and $\kappa=\sqrt{2 m\left(40 \hbar^{2} / m a^{2}+E\right)} / \hbar$. Note that we have thrown out the solution which grows without bound in the $x<-a$ region. Once again, continuity of the wavefunction at $x=0$ requires

$$
C=-D
$$

while continuity at $x=-a$ gives

$$
A e^{-k a}=C\left(e^{-i \kappa a}-e^{i \kappa a}\right)
$$

so that the wavefunction takes the form

$$
\psi(x)=\left\{\begin{array}{lr}
A e^{k x} & x<-a \\
-A \frac{e^{-k a}}{\sin (\kappa a)} \sin (\kappa x) & -a<x<0 \\
0 & x>0
\end{array}\right.
$$

Normalization requires

$$
\begin{aligned}
\int_{-\infty}^{\infty}|\psi|^{2} d x & =\int_{-\infty}^{-a}|A|^{2} e^{2 k x} d x+\int_{-a}^{0}|A|^{2} \frac{e^{-2 k a}}{\sin ^{2}(\kappa a)} \sin ^{2}(\kappa x) d x \\
& =e^{-2 k a}\left(\frac{1}{2 k}-\frac{\cot (\kappa a)}{2 \kappa}+\frac{a}{2 \sin ^{2}(\kappa a)}\right) \\
\Longrightarrow A & =\frac{\sqrt{2 k \kappa} e^{k a}}{\sqrt{\kappa-k \cot (\kappa a)+a k \kappa \csc ^{2}(\kappa a)}}
\end{aligned}
$$

Finally we must insist on continuity of the derivative at $x=-a$, which will fix the allowed values of the energy.

$$
\begin{aligned}
k e^{-k a} & =-\frac{\kappa e^{-k a}}{\sin (\kappa a)} \cos (-\kappa a) \\
\Longrightarrow k & =-\kappa \cot (\kappa a)
\end{aligned}
$$

(3)

Plugging in the definitions of k and κ, we find

$$
\tan (\sqrt{80} \sqrt{1-y})=-\sqrt{\frac{1-y}{y}}
$$

in which $y \equiv-\frac{m a^{2} E}{40 \hbar^{2}}$. Note that $0<y<1$. Comparing both sides of the equation, we see that there are exactly 3 bound states (plot both sides of the equation to check).

The reflectivity for a scattering state coming in from $-\infty$ is nothing but $\frac{|B|^{2}}{|A|^{2}}$ from part (2), above. Recall that we found

$$
\begin{aligned}
i k\left(A e^{-i k a}-B e^{i k a}\right) & =i \kappa\left(A e^{-i k a}+B e^{i k a}\right) \frac{e^{-i \kappa a}-e^{i \kappa a}}{e^{-i \kappa a}+e^{i \kappa a}} \\
& =\kappa\left(A e^{-i k a}+B e^{i k a}\right) \tan (\kappa a) \\
\Longrightarrow \frac{i k}{\kappa}\left(1-\frac{B}{A} e^{2 i k a}\right) & =\tan (\kappa a)\left(1+\frac{B}{A} e^{2 i k a}\right) \\
\Longrightarrow \frac{B}{A} & =e^{-2 i k a} \frac{i k-\kappa \tan (\kappa a)}{i k+\kappa \tan (\kappa a)}
\end{aligned}
$$

Thus we have

$$
R=\frac{|B|^{2}}{|A|^{2}}=\frac{\kappa^{2} \tan ^{2}(\kappa a)+k^{2}}{\kappa^{2} \tan ^{2}(\kappa a)+k^{2}}=1
$$

which makes sense since there is an infinite barrier at $x=0$. The probability to escape to $x=+\infty$ is zero, and the wavefunction has too much energy to be bound, so it must reflect back to $x=-\infty$ with 100% probability.

2

(1)

$$
\begin{aligned}
\frac{\partial}{\partial x} e^{i k x}(\tanh x+C) & =i k e^{i k x}(\tanh x+C)+e^{i k x} \operatorname{sech}^{2} x \\
\Longrightarrow \frac{\partial^{2}}{\partial x^{2}} e^{i k x}(\tanh x+C) & =-k^{2} e^{i k x}(\tanh x+C)+i k e^{i k x} \operatorname{sech}^{2} x-2 e^{i k x} \operatorname{sech}^{2} x \tanh x
\end{aligned}
$$

so that

$$
\begin{aligned}
-\frac{\partial^{2} \psi}{\partial x^{2}}-2 \operatorname{sech}^{2} x \psi & =e^{i k x}\left[k^{2} \tanh x+C k^{2}-i k \operatorname{sech}^{2} x+2 \operatorname{sech}^{2} x \tanh x-2 \operatorname{sech}^{2} \tanh x-2 C \operatorname{sech}^{2} x\right] \\
& =e^{i k x}\left[k^{2} \tanh x+C k^{2}-i k \operatorname{sech}^{2} x-2 C \operatorname{sech}^{2} x\right] \\
& =k^{2} \psi
\end{aligned}
$$

for $C=-i k / 2$. Note that as $x \rightarrow-\infty$, this wavefunction becomes $\psi \rightarrow-(1+i k / 2) e^{i k x}$ a plane wave incident from the left. As $x \rightarrow \infty, \psi \rightarrow(1-i k / 2) e^{i k x}$, a plane wave travelling to the right. Thus the transmission coefficient is just

$$
T=\frac{|1-i k / 2|^{2}}{|1+i k / 2|^{2}}=\frac{1+k^{2} / 4}{1+k^{2} / 4}=1
$$

$R+T=1 \Longrightarrow R=0$.
(2)

Note that the above is a solution to the Schrodinger equation with energy $E=k^{2}$ for both k and $-k$. Thus the general solution is

$$
\psi=A e^{i k x}(\tanh x-i k / 2)+B e^{-i k x}(\tanh x+i k / 2)
$$

We can get the bound state solutions by taking $k \rightarrow i k$ (equivalent to sending $E \rightarrow-E$). This gives the general bound-state solution

$$
\psi=A e^{-k x}(\tanh x+k / 2)+B e^{k x}(\tanh x-k / 2)
$$

with energy $E=-k^{2}$. In the region $x<0$ we may throw out the solution which grows unbounded as $x \rightarrow-\infty$, and of course we may perform the analogous cut on the $x>0$ solution. This gives

$$
\psi= \begin{cases}A e^{k x}(\tanh x-k / 2) & x<0 \\ B e^{-k x}(\tanh x+k / 2) & x>0\end{cases}
$$

Continuity at $x=0$ requires

$$
A=-B
$$

Continuity of the derivative requires

$$
A\left(1-k^{2} / 2\right)=-A\left(1-k^{2} / 2\right)
$$

Thus the only bound-state solution is $k^{2}=2 \Longrightarrow E=-2$.
(3)

Since this is the unique bound-state wavefunction, it must also be the ground state. This is further confirmed by noting that the wavefunction has no nodes, and therefore must be the state of lowest energy.

