ME 132, Spring 2003, Quiz \# 1

$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$	TOTAL
8	5	12	10	15	10	60

1. (a) What is the general form of the solution to the differential equation

$$
\ddot{x}(t)+5 \dot{x}(t)+6 x(t)=0
$$

(b) What is the general form of the solution to the differential equation

$$
\ddot{x}(t)+5 \dot{x}(t)+6 x(t)=12
$$

Your expressions both should have two free constants.
2. Consider the complex number

$$
\gamma=\frac{3-4 j}{8+6 j}
$$

(a) Determine $|\gamma|$
(b) Determine $\angle \gamma$
3. 12 different $\operatorname{input}(u) /$ output (y) systems are given below. The unit-step response, starting from zero initial conditions at $t=0^{-}$, are shown. Match the system with the step response.
(a) $\ddot{y}(t)+8.4 \dot{y}(t)+36 y(t)=-12 \dot{u}(t)+36 u(t)$
(b) $\ddot{y}(t)+0.4 \dot{y}(t)+y(t)=5 \dot{u}(t)+u(t)$
(c) $\ddot{y}(t)+0.4 \dot{y}(t)+y(t)=4 \dot{u}(t)-u(t)$
(d) $\ddot{y}(t)+2 \dot{y}(t)+25 y(t)=-8 \dot{u}(t)+25 u(t)$
(e) $\ddot{y}(t)+8.4 \dot{y}(t)+36 y(t)=-36 u(t)$
(f) $\ddot{y}(t)+1.4 \dot{y}(t)+y(t)=-5 \dot{u}(t)-u(t)$
(g) $\ddot{y}(t)+0.4 \dot{y}(t)+y(t)=-4 \dot{u}(t)$
(h) $\ddot{y}(t)+8.4 \dot{y}(t)+36 y(t)=-12 \dot{u}(t)-36 u(t)$
(i) $\ddot{y}(t)+1.4 \dot{y}(t)+y(t)=-4 \dot{u}(t)+u(t)$
(j) $\ddot{y}(t)+2 \dot{y}(t)+25 y(t)=6 \dot{u}(t)+25 u(t)$
$(\mathrm{k}) \ddot{y}(t)+1.4 \dot{y}(t)+y(t)=u(t)$
(l) $\ddot{y}(t)+2 \dot{y}(t)+25 y(t)=6 \dot{u}(t)$

4. A process, with input u, and output y, is governed by the equation

$$
\ddot{y}(t)+\dot{y}(t)+y(t)=u(t)
$$

A PI (Proportional plus Integral) controller is proposed

$$
\begin{aligned}
u(t) & =K_{P}[r(t)-y(t)]+K_{I} z(t) \\
\dot{z}(t) & =r(t)-y(t)
\end{aligned}
$$

Here r is a reference input.
(a) Using the controller equations, express $\dot{u}(t)$ in terms of r, \dot{r}, y and \dot{y}.
(b) By differentiating the process equation, and substituting, derive the closed-loop differential equation relating r and y (there should be no u in the equation).
(c) Using the 3rd order test for stability, determine the conditions on K_{P} and K_{I} such that the closed-loop system is stable.
5. A process, with input u, disturbance d and output y is governed by

$$
\dot{y}(t)=2 y(t)+3 u(t)+d(t)
$$

(a) Is the process stable?
(b) Suppose $y(0)=1$, and $u(t)=d(t) \equiv 0$ for all $t \geq 0$. What is the solution $y(t)$ for $t \geq 0$.
(c) Consider a proportional-control strategy, $u(t)=K_{1} r(t)+K_{2}[r(t)-y(t)]$. Determine the closed-loop differential equation relating the variables (y, r, d).
(d) For what values of K_{1} and K_{2} is the closed-loop system stable?
(e) As a function of K_{2}, what is the steady-state gain from $d \rightarrow y$ in the closed-loop system?
(f) As a function of K_{1} and K_{2}, what is the steady-state gain from $r \rightarrow y$ in the closed-loop system?
(g) Choose K_{1} and K_{2} so that the steady-state gain from $r \rightarrow y$ equals 1 , and the steady-state gain from $d \rightarrow y$ equals 0.1.
(h) With those gains chosen, sketch (try to be accurate) the two responses $y(t)$ and $u(t)$ for the following situation:

$$
y(0)=0, \quad r(t)=\left\{\begin{array}{ll}
0 & \text { for } 0 \leq t \leq 1 \\
1 & \text { for } 1<t
\end{array}, \quad d(t)= \begin{cases}0 & \text { for } 0 \leq t \leq 2 \\
1 & \text { for } 2<t\end{cases}\right.
$$

6. A 1st order process

$$
\dot{y}(t)=u(t)+d(t)
$$

is controlled by a proportional control

$$
u(t)=K_{P}\left[r(t)-y_{m}(t)\right]
$$

where $y_{m}(t)=y(t)+n(t)$. The interpretation of signals is: u is control input; y is process output; d is external disturbance on process; r is a reference input, representing a desired value of $y ; n$ is measurement noise.
(a) Eliminate u from the equations, and get the closed-loop differential equation relating (r, d, n) to y.
(b) Under what conditions on K_{P} is the closed-loop system stable?
(c) How is the time-constant of the closed-loop system related to K_{P} ?
(d) Shown below are the closed-loop frequency responses from $(r, d, n) \rightarrow y$, as K_{P} increases from 0.1 to 10 . Indicate on each graph with an arrow "cutting" across the plots, the direction of increasing K_{P}.

(e) Shown below are the closed-loop frequency responses from $(r, d, n) \rightarrow u$, as K_{P} increases from 0.1 to 10 . Indicate on each graph with an arrow "cutting" across the plots, the direction of increasing K_{P}.

