EECS 100B, Spring 1982
 Midterm \#1
 Professor J.M. Smith

Problem \#1

An n-type silicon wafer has 10^{15} phosphorous atoms per cubic centimeter. Boron is diffused into the crystal with the surface concentration of $\mathrm{C}_{0}=10^{19}$ per cubic centimeter. The diffusion constant D is $8 \mathrm{~cm}^{2}$ per second. The time of diffusion is only 3.125×10^{-10} seconds. The resulting distance constant L is 10^{-6} meters. What is the concentration of p-type boron at the depth of 2.5 micrometers?

Problem \#2

A DTL NAND gate has all inputs tied together at 5 volts. The resistor to the power supply of 5 volts from the input diode anodes is 5000 ohms, the collector resistor is 2000 ohms. The load capcitance from the collector to ground C_{L} is 50 picofarads (50×10^{-12}). The capacitance from the input diode anodes to ground C_{D} is 10 picofarads.
(a) Assuming C_{D} is negligible, what is the time constant of the output circuit when the signals to all input diodes go to zero simultaneously and instantly?
(b) Assuming C_{L} is neglible and all inputs are zero volts, what is the time constant of the voltage at the diode anodes when the signals to all input diodes go to 5 volts simultaneously and instantly?

Problem \#3

Draw the circuit for a TTL NAND gate with push-pull output circuit. Show at least two inputs.

Problem \#4

Construct the truth table for

Problem \#5

$$
F=\overline{(A+\bar{A} B)+\overline{(C+D)}}+\bar{A} B
$$

Reduce this to the sum of products form.

Problem \#6

Draw the Karnaugh map for F in Problem (5).

Problem \#7

Synthesize F with NAND gates.

Problem \#8

In this circuit, the input to J is always 1.

Each clock pulse last only long enough for one transition to occur. Finish the table below for three clock pulses, and then set $\mathrm{J}=0$ before the fourth clock pulse for the last transition.

```
Before Transition
J K Q NOT(Q)
1 1 1 0
```

```
After Transition
    J K Q NOT (Q)
```

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

