EECS 120, Midterm 1, 3/04/02

Do your calculations on the sheets and put a box around your answer where this makes sense. Print your name and your TA's name here:

Last Name	First	TA's name

- 1. **20 points** The following statements are either TRUE or FALSE. If you believe a statement is true, outline a BRIEF PROOF. If you believe it is false, provide a BRIEF COUNTEREXAMPLE.
 - a. If x(t), t is in the set of real numbers, is a real-valued signal, its Fourier transform X(f), f is in the set of real numbers, is also real-valued.
 - b. If x(t), y(t), t is in the set of real numbers, are real-valued signals and (x * y)(t) = 0, for all t contained in the set of real numbers, then either x or y is identically zero.
 - c. If x(t), t is in the set of real numbers, is a real-valued, baseband signal with bandwidth W Hz, then the signal y, $y(t) = x^4(t)$, t is in the set of real numbers, has bandwidth at most 4W Hz.
 - d. If x(t), t is in the set of real numbers, is a real-valued, band-limited signal with bandwidth W Hz, then the signal y(t) = x(2t), t is in the set of real numbers, has bandwidth W^2 Hz.
 - e. If x,y are real-valued signals with bandwidth W_x , W_y Hz, respectively, the signal x+y has bandwidth W_x+W_y Hz.
- 2. **20 points** m_1 , m_2 are two signals both with bandwidth B Hz. A modulated signal x with carrier frequency $f_c \gg B$ is constructed as

For every value t,
$$x(t) = m_1(t)\cos 2\pi f_c t + m_2(t)\sin 2\pi f_c t$$

- a. Find a coherent demodulation scheme that recovers m_1 . Briefly explain using a mathematical or graphical argument why your scheme works.
- b. Find a coherent demodulation scheme that recovers m₂. Briefly explain using a mathematical or graphical argument why your scheme works.
- 3. **20 points** A pure tone $m(t) = \cos 2\pi f_m t$ amplitude-modulates the carrier $\cos 2\pi f_c t$ ($f_c >> f_m$) using three schemes: (1) AM without carrier, (2) AM with large carrier, (3) AM-USB. The resulting signal is called x.

For each scheme write down the algebraic expression for x, the algebraic expression for its Fourier transform, X, and sketch X(f), for f greater than or equal to zero. Carefully mark the magnitudes and frequencies on your sketch.

4. 20 points A signal m phase-modulates a carrier of frequency f_c Hz to produce the signal

For every value t,
$$x(t) = cos(2\pi f_c t + m(t))$$

Suppose $|m(t)| \ll 1$, so this is narrow-band PM.

1 of 2

- a. Find a coherent demodulation scheme to recover the signal m from x. Explain why your scheme works. You may give an algebraic or block diagram description of your scheme.
- b. Suppose the modulated signal suffers amplitude distortion so that the received signal is y instead of x,

For every value t,
$$y(t) = A(t)x(t) = A(t)\cos(2\pi f_c t + m(t))$$

Where $1 \le A(t) \le 2$ is the distortion. What signal does your demodulater generate and how is it related to m?

c. Modify the design of your demodulater so that the effect of the distortion A is eliminated. Remember you don't know A. [Hint: First send y through a hard delimiter. A hard delimiter is a memoryless device g whose output is sgn(y(t)) when its input is y(t).]

2 of 2 1/27/2007 3:43 PM