EE120, Spring 97
 Midterm 2
 Professor Fearing

Problem 1 (30 points)
Let $m(t)=\cos \left(2000^{*} \mathrm{pi} * \mathrm{t}\right), \mathrm{n}(\mathrm{t})=\sin \left(2000^{*} \mathrm{p} \mathrm{i}^{*} \mathrm{t}\right)$ and $\mathrm{f} _\mathrm{c}=10^{\wedge} 6$.
[1 pts.] a) Sketch $\mathrm{M}(\mathrm{f})$, labelling height/area, center frequency, and sideband frequencies.
[3pts] b) Let $\mathrm{x} _1(\mathrm{t})=\mathrm{m}(\mathrm{t}) \cos \left(2 * \mathrm{pi}^{*} \mathrm{f} _\mathrm{c}^{*} \mathrm{t}\right)$. Sketch $\mathrm{X} _1(\mathrm{f})$, labelling height/area, center frequency, and sideband frequencies.
[3pts] c) Let $\mathrm{x} _2(\mathrm{t})=(1+\mathrm{m}(\mathrm{t})) \cos \left(2 * \mathrm{pi}^{*} \mathrm{f} _\mathrm{c}^{*} \mathrm{t}\right)$. Sketch $\mathrm{X} _2(\mathrm{f})$, labelling height/area, center frequency, and sideband
frequencies.
$[6 \mathrm{pts}] \mathrm{d})$ Let $\mathrm{x} _3(\mathrm{t})=[\mathrm{m}(\mathrm{t})] \cos \left(2 * \mathrm{pi}{ }^{*} \mathrm{f} _\mathrm{c}^{*} \mathrm{t}\right)+[\mathrm{n}(\mathrm{t})] \sin \left(2 * \mathrm{pi} * \mathrm{f} _\mathrm{c} * \mathrm{t}\right)$. Sketch $\mathrm{X} _3(\mathrm{f})$, labelling height/area, center frequency,
and sideband frequencies.
[7pts] e) Let $x _4(t)=\cos \left(2 * \mathrm{pi}^{*} _\mathrm{c}^{*} \mathrm{t}+\mathrm{m}(\mathrm{t}) / 10\right)$. Sketch $\mathrm{X} _4(\mathrm{f})$, labelling height/area, center frequency, and sideband
frequencies. (Hint: Approximation may be appropriate.)
[6pts] f) Describe how you could recover $m(t)$ and $n(t)$ from $x _3(t)$. Draw a block diagram of a system which has input
$\mathrm{x} _3(\mathrm{t})$ and outputs $\mathrm{m}(\mathrm{t})$ and $\mathrm{n}(\mathrm{t})$. The system should work for any $\mathrm{m}(\mathrm{t})$ and $\mathrm{n}(\mathrm{t})$, bandlimited to 10 kHz . Specify appropriate frequencies for any component you use.
[4pts] g) Identify the type of modulation used to generate each signal (e.g. AM-DSB, NBFM, etc.). x_1(t) modulation type \qquad
$x _2(t)$ modulation type \qquad x_3(t) modulation type \qquad
x_4(t) modulation type \qquad

Problem 2 (10 points)
The problem considers filtering of signals by a filter $\mathrm{H}(\mathrm{f})$ with frequency response as shown:

a) What is $z _1(t)$, the output of the filter for input $y 1 _(t)$? \qquad
b) Sketch $z _2(t)$, the output of the filter for input $y _2(t)$.
c) BONUS: Sketch $z _3(t)$, the output of the filter for input $y _3(t)$.

A modulation scheme is described by
$\mathrm{x}(\mathrm{t})=\cos \left(2^{*} \mathrm{pi} i^{*} _\mathrm{c}^{*} \mathrm{t}+2 * \mathrm{pi} \mathrm{F}_{\mathrm{f}} \mathrm{m} * \mathrm{t} * \mathrm{~m}(\mathrm{t})\right)$ with $\mathrm{f} _\mathrm{C}=10 \mathrm{kHz}$ and $\mathrm{f} _\mathrm{m}=1 \mathrm{kHz}$
[16 pts] a) Sketch $\operatorname{ReX}(\mathrm{f})$, noting important frequencies, areas, and amplitudes. (Hint: Express $x(t)$ as a sum of two signals.)
(Hint: Use appropriate engineering approximation.)
[4pts] b)What is the power in $x(t)$? \qquad

What fraction of the power in $\mathrm{X}(\mathrm{f})$ is at the carrier frequency $\mathrm{f} _\mathrm{c}$? \qquad

Problem 4

Consider the frequency response of a real, stable, system shown below:

[2pts] a) What is the minimum number of poles the system must have? \qquad
[2 pts] b) What is the minimum number of zeros the system must have? \qquad
[6 pts] c) Sketch and label the pole-zero diagram for a stable system (using a minimum number of poles and zeros) which would have the given magnitude response. Note: $\mathrm{H}($ omega $=0)=0.1 . \mathrm{H}($ omega $=10)=0$.

Problem 5

For each impulse response below, choose the corresponding pole-zero diagram below and put letter next to the given impulse response.

索

Hint 1: $(a+b) /(a+c)=1+(b-c) /(a+c)$

Hint 2: No impulse response contains delta(t).
h_1(t) = \qquad
$h _2(t)=$ \qquad
h_3(t) = \qquad
h_4(t) $=$ \qquad
h_5(t) $=$ \qquad
h_6(t) = \qquad

Problem 6 (15 pts)

[3 pts] a) With $\mathrm{d}(\mathrm{t})=0$, compute $\mathrm{Y}(\mathrm{s}) / \mathrm{X}(\mathrm{s})=$
[5 pts] b) For which values of k is the system stable?
k: \qquad

For parts c and d, if the limit exists, answer should be a number. Otherwise, write "does not exist."
$[3 \mathrm{pts}] \mathrm{c})$ Let $\mathrm{d}(\mathrm{t})=\sin (2 \mathrm{t}) \mathrm{u}(\mathrm{t})$ and $\mathrm{x}(\mathrm{t})=0$, with $\mathrm{k}=1$.
$\lim (\mathrm{t}->$ infinity $) \mathrm{y}(\mathrm{t})=$ \qquad
[4 pts] d) let $\mathrm{d}(\mathrm{t})=0$ and $\mathrm{x}(\mathrm{t})=\mathrm{tu}(\mathrm{t})$, with $\mathrm{k}=1$.
$\lim (\mathrm{t}->$ infinity $) \mathrm{y}(\mathrm{t})=$ \qquad

