ME 132, Fall 2003, Quiz 1

Name:

$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	TOTAL
8	8	12	9	13	50

1. Neatly/accurately sketch the solution (for $t \geq 0$) to the differential equation

$$
\dot{x}(t)=-3 x(t)+6 u(t)
$$

subject to the initial condition $x(0)=-1$, and forcing function

$$
\begin{array}{ll}
u(t)=0 & \text { for } 0 \leq t \leq 2 \\
u(t)=3 & \text { for } 2<t \leq 4 \\
u(t)=2 & \text { for } 4<t \leq 4.33 \\
u(t)=1 & \text { for } 4.33<t \leq 6
\end{array}
$$

2. (a) What is the general form of the solution to the differential equation

$$
\ddot{x}(t)+6 \dot{x}(t)+5 x(t)=0
$$

(b) What is the general form of the solution to the differential equation

$$
\ddot{x}(t)+6 \dot{x}(t)+5 x(t)=-10
$$

Your expressions both should have two free constants.
3. The response of the systems listed below is shown on the next page. Match the ODE with the solution graph. Make a table with pertinent information that justifies your answers. In each case, all appropriate initial conditions are 0 . By that, I mean that if the system is first-order, then the initial condition is $y(0)=0$. If the system is second order, then the initial conditions are $\dot{y}(0)=0, y(0)=0$. And so on...
(a) $\dot{y}(t)+y(t)=1$
(b) $\dot{y}(t)+5 y(t)=5$
(c) $\dot{y}(t)-y(t)=1$
(d) $\dot{y}(t)+10 y(t)=10$
(e) $\ddot{y}(t)-2 \dot{y}(t)-y(t)=-1$
(f) $\ddot{y}(t)-2 \dot{y}(t)+9 y(t)=9$
(g) $\ddot{y}(t)+0.4 \dot{y}(t)+y(t)=1$
(h) $\ddot{y}(t)+0.12 \dot{y}(t)+0.09 y(t)=0.09$
(i) $\ddot{y}(t)+6 \dot{y}(t)+5 y(t)=5$
(j) $\ddot{y}(t)+0.3 \dot{y}(t)+0.09 y(t)=0.09$
(k) $\ddot{y}(t)+3 \dot{y}(t)+9 y(t)=9$
(l) $\ddot{y}(t)+1.8 \dot{y}(t)+9 y(t)=9$

4. A process, with input u, and output y, is governed by the equation

$$
\ddot{y}(t)+\dot{y}(t)+y(t)=u(t)
$$

A PI (Proportional plus Integral) controller is proposed

$$
\begin{aligned}
u(t) & =K_{P}[r(t)-y(t)]+K_{I} z(t) \\
\dot{z}(t) & =r(t)-y(t)
\end{aligned}
$$

Here r is a reference input.
(a) Using the controller equations, express $\dot{u}(t)$ in terms of r, \dot{r}, y and \dot{y}.
(b) By differentiating the process equation, and substituting, derive the closed-loop differential equation relating r and y (there should be no u in the equation).
(c) Using the 3rd order test for stability, determine the conditions on K_{P} and K_{I} such that the closed-loop system is stable.
5. A process, with input u, disturbance d and output y is governed by

$$
\dot{y}(t)=y(t)+3 u(t)+d(t)
$$

(a) Is the process stable?
(b) Suppose $y(0)=2$, and $u(t)=d(t) \equiv 0$ for all $t \geq 0$. What is the solution $y(t)$ for $t \geq 0$.
(c) Consider a proportional-control strategy, $u(t)=K_{1} r(t)+K_{2}[r(t)-y(t)]$. Determine the closed-loop differential equation relating the variables (y, r, d).
(d) For what values of K_{1} and K_{2} is the closed-loop system stable?
(e) As a function of K_{2}, what is the steady-state gain (just at zero frequency) from $d \rightarrow y$ in the closed-loop system?
(f) As a function of K_{1} and K_{2}, what is the steady-state gain (again, just at zero frequency) from $r \rightarrow y$ in the closed-loop system?
(g) Choose K_{1} and K_{2} so that the steady-state gain from $r \rightarrow y$ equals 1 , and the steady-state gain from $d \rightarrow y$ equals 0.2 .
(h) With those gains chosen, sketch (try to be accurate) the two responses $y(t)$ and $u(t)$ for the following situation:

$$
y(0)=0, \quad r(t)=\left\{\begin{array}{ll}
0 & \text { for } 0 \leq t \leq 1 \\
1 & \text { for } 1<t
\end{array}, \quad d(t)= \begin{cases}0 & \text { for } 0 \leq t \leq 2 \\
1 & \text { for } 2<t\end{cases}\right.
$$

