EE120, Spring/1998 exam #1 Professor Lau

This is a closed book, closed-notes exam. You are allowed one double-sided 8.5" x 11" handwritten crib sheet. No calculators. There are four problems. Please make sure you have all the problems. Each problem is work 20 points.

Problem #1 (5 points each)

\mathbf{D}	4 :	:	1-	_ C	41	£_11	:	-:	_1_ :		:1: .	TC :4 :	periodic	.1	4 :	:4-	C1	1		1
1110	termine	11	eacn	OT	THE	TOH	nwino	Sions	aic i	(C)	nemodic	11 11 19	nemodic	ae	rermine	110	$-$ m α	amentai	nen	വ
\mathcal{L}^{C}		11	Cucii	· OI	uic	1011	J W 1112	51511	uib i	LO	periodic.	11 10 10	periodic	, ac		1113	Tullu	ammema	PCII	.ou.

(a)
$$x(t) = 5\sin(t + \pi^{1/2})$$

Periodic? _____ Fundamental period = _____

(b)
$$x(t) = \exp[i(t^2 + 2t)]$$

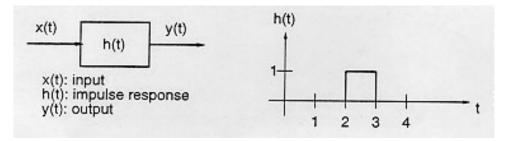
Periodic? _____ Fundamental period = _____

$$(c) x(t) = \sin(|3t|)$$

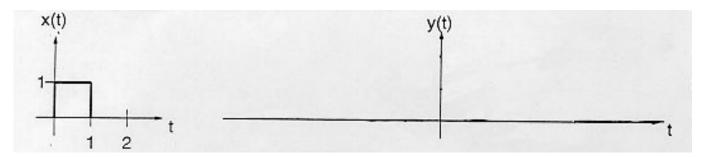
Periodic? _____ Fundamental period = _____

(d)
$$x(t) = \sin^2(|3t|)$$

Periodic? _____ Fundamental period = _____


Problem #2 (4 points each)

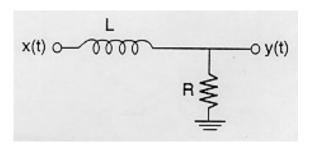
Determine if each of the following systems is i) linear, ii) time invariant. Mark the box with either a **Y** or **N**. Empty or illegible answers will be marked wrong.


	Linear?	Time Invariant?
a) $y(t) = sin(x(t))$		
b) $y(t) = x(t) $		
c) $y(t) = x(t)$		
d) $y(t) = x(t)u(t)$		
e) $y(t) = \int_{-\infty}^{t} e^{-(t-\tau)}x(\tau)d\tau$		

Problem #3 (10 points each)

Given this LTI system, with the impulse response h(t):

(a) Given x(t) below, sketch y(t). Please label appropriately.



(b) Given x(t) below, sketch y(t). Please label appropriately.

Problem #4 (6 + 7 + 7 points)

Given the circuit below,

a) Derive the differential equation relating x(t) and y(t).

Note: voltage across the inductor = $L \frac{di}{dt}$

b) Find the impulse response $h(t)$.		
c) Find the step response $s(t)$.		

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams
please contact mailto:examfile@hkn.eecs.berkeley.edu