EECS 40, Fall 2006
Prof. Chang-Hasnain
Midterm #1

September 27, 2006
Total Time Allotted: 50 minutes
Total Points: 100

1. This is a closed book exam. However, you are allowed to bring one page (8.5" x 11"), single-sided notes
2. No electronic devices, i.e. calculators, cell phones, computers, etc.
3. SHOW all the steps on the exam. Answers without steps will be given only a small percentage of credits. Partial credits will be given if you have proper steps but no final answers.
4. Draw BOXES around your final answers.
5. **Remember to put down units.** Points will be taken off for answers without units.

Last (Family) Name: __

First Name: ___

Student ID: _______________________ Discussion Session: ____________

Signature: __

<table>
<thead>
<tr>
<th>Score:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1 (50 pts)</td>
<td></td>
</tr>
<tr>
<td>Problem 2 (50 pts):</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Page 1 of 6
2. For t<0, the switch was open and $V_{out}=0$. At t=0s, S1 closes. NOTE: $D=10^6$; $k=10^3$; $e^1=0.37$; $e^2=0.14$ Remember to put down units.

(a) (12 pts) Construct the differential equation of V_{out} in terms of all the given quantities. Hint: you may solve this use Mesh or Nodal analysis, or, even simpler, Thevenin equivalent circuit. Write all your steps.

(b) (5 pts) Write a closed-form expression for $V_{out}(t)$ for t>0

(c) (8 pts) Plot V_{out} as a function of time t = 0 to t = 100ms. Label the y-axis and all key points: starting value, 1 time constant value, value at infinity.
(d) (5 pts) As \(t \) approaches infinity, what value will \(i_3 \) approach?

(e) (5 pts) Now, suppose someone disturbed the circuit and S1 is re-opened at 40 ms again!
Construct the new differential equation.

(f) (6 pts) What is the new time constant? What is the new expression for \(V_{out}(t) \) for \(t > 40 \) ms.

(g) (5 pts) In this case, as \(t \) approaches infinity, what value will \(i_3 \) approach?

(h) (5 pts) Plot the new \(V_{out} \) from \(t = 0 \) ms to 100 ms to include the re-opening of the switch at 40 ms. **Label the y-axis and all key points:** starting value, value at switching point, 1 time constant values, value at infinity.
1. (50 pts) Equivalent circuit.

(a) (5 pts) What is the current i_1 through the 5 Ohm resistor?

(b) (5 pts) Use KVL, write down the equation for V_X in terms of V_1 and/or V_2

(c) (5 pts) Use KCL, write down the equation for V_1 and solve for V_1

(d) (5 pts) Use KCL, write down the equation for V_2 and solve for V_2
(e) (5 pts) Solve for V_{out} (this is simply the Thevenin Voltage)

(f) Now we short the two end terminals.

(5 pts) What is V_1?

(g) (5 pts) What is V_x?

(h) (5 pts) What is I_{SC}?
(i) (5 pts) what is the Thevenin Resistance?

(j) (5 pts) Draw the Thevenin Equivalent Circuit.