
(a) [4 pts] What is the value of the current $i(t=0$
) in Amperes? The switch moves up at $\mathrm{t}=\stackrel{+}{0}$ and down at $\mathrm{t}=50 \mathrm{ps}$. (note that $1 \mathrm{ps}=10$
-12
$\mathrm{s})$.
(b) [4 pts $]$ What is the charge q on the + plate of the 1 pF capacitor in pC at $\mathrm{t}=50 \mathrm{ps}$?
(c) $[4 \mathrm{pts}]$ What is the value of the current $\mathrm{i}(\mathrm{t}=50$
ps) in Amperes? If you couldn't solve part (b), you can assume for this part that $\mathrm{q}(\mathrm{t}=50 \mathrm{ps})=5 \mathrm{pC}$. Needless to say, this is not the correct answer to part (b).

2. Ladder circuit [16 points]

(a) [5 pts] Find the numerical value of the current I
(b) [4 pts] Find the numerical value of the current I
you couldn't answer part (a), you
If you couldn't answer part (a), you can assume for this part that I
$=2 \mathrm{~mA}$. Needless to say, this is not the correct answer to (a).
(c) [3pts] Find the numerical value of the current I

In case you couldn't solve part (a), you can make the same assumption as you made on part (b).
(d) [4 pts] What is the total power absorbed by all the resistors in milliWatts?
3. Linear Circuit Analysis [17 points]

(a) [4pts] For this part, nodes A, C and D are connected to node B, which is selected as the reference node. Redraw the circuit with the reference node at the bottom.
(b) [4 pts] For the connections in part (a), find the numerical value of the current i

1
in microamps.
 circuit with the reference node at the bottom
(d) [5 pts] Solve for the numerical value of the voltage V
in Volts

