Electrical Engineering 40/40I/41I

Midterm 2 - Fall 1995

Professors S. Schwarz (40) and R.M. White (40I/41I)

Problem 1 [21\%]: Phasors

(a) Put a cross (X) by each of the expressions below which could be a phasor voltage:
$-3 e^{j(\omega 0 t+\phi)}-3 \cos \left(\omega t+27^{\circ}\right) \quad-3 \sin (\omega t+\pi) \quad-3+j 7$
$\ldots(3+j 7) \cos \left(\omega t+27^{\circ}\right) \ldots+3 j \quad-3 j \quad \sum^{3} e^{j 0.3} \ldots(3+j 7) /(4-j 10)$
(b) Write expressions for the real currents for each of the following, assuming that the frequency $f=60 \mathrm{kHz}$ and $\mathrm{I} 0=10 \mathrm{~mA}$, using the convention of the text. (Angles are in radians.)
$I_{0} e^{i 3}$
$I_{0}(3+j 4)$
$j I_{0} e^{i \pi / 2}$
(c) Convert the following real expression to the corresponding phasors:

$$
v(t)=4 \sin (377 t) m V
$$

$$
v(t)=12 \cos (377 t-\pi / 2) m V
$$

$$
v(t)=\left(\sqrt{\frac{1}{2}}\right) \sin (377 t-\pi / 4) m V
$$

Page 1

Problem 2 [21\%]: Circuit Elements

(a) [3\%] List two passive circuit elements that store energy:
(b) [9\%] Suppose that in a portion of the circuit for an electronic door opener you need an impedance having a 10-ohm real part and a 30 -ohm negative reactive part at a frequency of 60 kHz . Show two circuits that provide this.
(c) [9\%] In this circuit I 0 is a sinusoidal ideal current source with amplitude $1 \mathrm{~mA}, \mathrm{C}=1_{\mu} \mathrm{F}, \mathrm{R}=1000 \Omega, \mathrm{f}=60 \mathrm{~Hz}$. Find the amplitude of the sinusoid V .

Page 2

Problem 3 [18\%]: Op-Amps

The voltage $\mathrm{vs}(\mathrm{t})$ is an endless sinusoid with frequency 1 MHz and amplitude 2 V , as shown here:

(a) Assume the op-amp is completely ideal and its power-supply voltages are $\pm 15 \mathrm{~V}$. Sketch vout showing vertical scale and maximum values.

Page 3
(b) Same question as (a), except the op-amp has maximum output current of 50 mA . Show the vertical scale and maximum values.
(c) Same question as (a); op-amp is completely ideal except that it has a finite gain-bandwidth product of 1E6 1/s. Show
the amplitude scale and maximum values.

Page 4

Problem 4 [20\%]: Diodes

In the above circuit, the diodes are to be represented by the large signal diode model, (the one that looks like this:)

(a) Suppose vs(t) is

(Volts)

Graph $\operatorname{vout}(t)$ clearly on the same set of axes.

vs and the diode are the same as in part (a). Find the time-averaged power dissipated in the diode, averaged over the 4second period.

Page 5

Problem 5 [20\%]: RC Circuits and Bode Plots

This problem relates to a probe often used with oscilloscopes to prevent them from adverseley affecting circuits whose voltages they measure.
(a) The basic idea of the probe is shown here: The ideal oscilloscope would be connected at terminals C-D and the probe would be connected to the circuit under test at A-B. (Resistor Rp represents an actual resistor built into the probe, and resistor Rin represents the input resistance of the oscilliscope.)

Sketch the Bode plot in dB of \mid vout/vin \mid for this circuit. Indicate slopes and break frequencies (if any).

$\omega(\log$ scale $)$

Page 6
(b) Sketch the Bode plot for another circuit in which

$$
\left|\frac{v_{o u t}}{v_{i n}}\right|=\frac{10^{6}+100 \omega^{2}}{\omega \sqrt{\omega^{4}+10^{12}}}
$$

Indicate slopes and break frequencies (if any).

Page 7

© 1995 by Schwarz and White translated to HTML by Walter Hsiao
Eta Kappa Nu (November 1995)

