EXAM 1 - open book, open notes, no external communication

$1 .(15+15=30 \%)$
Calculate the pressure difference between the floor and the ceiling of this lecture hall. The ceiling is about 6 m high. The room temperature is $15^{\circ} \mathrm{C}$. The lecture hall is about 100 m above the sea level. What would the difference be if the lecture hall were at Lake Tahoe, where the elevation is about 2000 meters?
Determine the local density using Table C. 2 or class notes (Eq. 8)

$$
\begin{gathered}
\Delta p=\rho g \Delta z=1.23 \mathrm{~kg} / \mathrm{m}^{3} \times 9.81 \mathrm{~m} / \mathrm{s}^{2} \times 6 \mathrm{~m}=72 \mathrm{~Pa} \quad \text { in Berkeley } \\
\Delta p=\rho g \Delta z=1.00 \mathrm{~kg} / \mathrm{m}^{3} \times 9.81 \mathrm{~m} / \mathrm{s}^{2} \times 6 \mathrm{~m}=59 \mathrm{~Pa} \quad \text { at Lake Tahoe }
\end{gathered}
$$

$\overline{2 .(10+5+20=35 \%)}$

Consider the flow of water in a channel of diameter D. The velocity is uniform U_{1}, and pressure is p_{1}. A disk of diameter d is placed centrally in the channel. When the overall pressure is low enough, a cavitation bubble forms downstream of the disk, in which the pressure is the vapor pressure of water $p_{v} \ll p_{1}$. Far downstream, the bubble diameter is a and water flow velocity in the water layer is uniform. Ignore all gravitational and viscous effects.
(a) Determine the water velocity far downstream.
(b) Determine the cavitation bubble diameter a.
(c) Determine the drag force on the disk.

Bernoulli Eq:
Mass Conservation: $\left(A_{D}=\pi D^{2} / 4, A_{d}=\pi d^{2} / 4, A_{a}=\pi a^{2} / 4\right)$

$$
U_{2}=U_{1} \sqrt{1+2\left(p_{1}-p_{v}\right) / \rho U_{1}^{2}}
$$

$$
\dot{m}=\rho U_{1} A_{D}=\rho U_{2}\left(A_{D}-A_{a}\right) \Longrightarrow a=D \sqrt{1-U_{1} / U_{2}}
$$

Momentum Conservation:

$$
p_{1} A_{D}-\dot{m} U_{1}-p_{v}\left(A_{D}-A_{d}\right)+\dot{m} U_{2}-F_{d}=0 \Longrightarrow F_{d}=\left(p_{1}-p_{v}\right) A_{D}+p_{v} A_{d}+\dot{m}\left(U_{2}-U_{1}\right)
$$

3. $(5+10+15+5=35 \%)$

Consider a liquid in solid body rotation in an infinitely long vertical cylindrical container in the gravitational field g. The rotation rate is Ω and the cylinder radius a. Suppose a small air bubble is released from the wall of the cylinder. Since the bubble will follow the line of the steepest pressure drop, it will rise and move toward the axis.
(a) Draw the pressure gradient vector at the location of the bubble.
(b) Obtain the equation describing the path of the bubble as observed from the rotating reference frame.
(c) Determine the trajectory of the bubble.
(d) Sketch the trajectory.

$$
-d \mathbf{x} \times \nabla p=0 \Longrightarrow(-d r, 0,-d z) \times\left(\rho r \Omega^{2}, 0,-\rho g\right)=0 \Longrightarrow \frac{-d r}{r \Omega^{2}}=\frac{d z}{g} \Longrightarrow r=a e^{-\Omega^{2} z / g}
$$

