EE105, Spring 1997
 Midterm \#2
 Professor R. T. Howe

(NOTE: Greek letters are sometimes written in Roman alphabet in all caps. Subscripts are written A_1, etc. Micro is sometimes represented by a 'u'.)

Default bipolar transistor parameters:
npn: BETA_n $=100$, V_A_n $=50 \mathrm{~V}, \mathrm{~V} _C E, s a t=0.2 \mathrm{~V}$.
pnp: BETA $_=50, V _A _p=25 V, V _E C, s a t=0.2 V$.
Default MOS transistor parameters: note that LAMBDA depends on L !
NMOS: MU_nC_ox $=50 u^{\prime} V^{\wedge}-2$, LAMBDA_n $=[0.1 / L] V^{\wedge}-1\left(\mathrm{~L}\right.$ in um) $\mathrm{V}_{-} \mathrm{T} _\mathrm{n}=1 \mathrm{~V}$. PMOS: MU_pC_ox $=25 u \mathrm{AV}^{\wedge}-2$, LAMBDA_p $=[0.1 / \mathrm{L}] \mathrm{V}^{\wedge}-1(\mathrm{~L}$ in um $) \mathrm{V}_{-} \mathrm{T} _\mathrm{p}=-1 \mathrm{~V}$.

Problem \#1

BiCMOS Transresistance Amplifier [22 points]

(a) [4 pts.] Draw the two-port small-signal model for this two-stage amplifier, with the small-signal source (and R_S) and the load resistor R_L attached. Your model should show the cascaded models for each stage; there is no need to substitute the expressions for the input and output resistances and gain elements for each stage.
(b) [4 pts.] Find the numerical value of the input resistance of this amplifier, R_in.
(c) [4 pts.] Find the numerical value of the output resistance of this amplifier, R_out. Your answer need only be correct to within plus or minus 5% for full credit.
(d) [6 pts.] Find the numerical value of the transresistance R_m. Note that R_S = infinity and R_L = infinity for calculating this two-port parameter. Your answer need only be correct to within plus or minus 5\% for full credit.
(e) [4 pts.] If the current supplies I_BIAS, i_SUP, 1 , and i_SUP, 2 all need a minimum voltage of 0.5 V across them in order to function, what are the maximum and minimum values of v_OUT? (In other words, find the output swing of the transresistance amplifier.)

Problem \#2

Static CMOS Logic Gate [18 points]

(a) [5 pts.] What is the logic operation performed by the above circuit? In other words, what is the logical expression for Q in terms of the three inputs, A, B, and C ? Note: you can use a truth table to answer this question.
(b) [4 pts.] We would like to have the worst case low-to-high and high-to-low propagation delays to be equal. Find the required relationship between the width-to-length ratio (W/L)_n of the NMOS transistor and the width-to-length ratio (W/L)_p of the PMOS transistors.
(c) [5 pts.] This logic gate has no load capacitance or wire capacitance (it does have parasitic drain-tobulk capacitances, however.) Find the channel length transistors L_p = L_n so that the worst case low-to-high propagation delay t PLH $=10^{\wedge}-11 \mathrm{~s}=100 \mathrm{ps}$.

Given: $M U _p=100 \mathrm{~cm} \wedge 2 / \mathrm{Vs}, \mathrm{C} _$ox $=2.5 \mathrm{fF} / \mathrm{um}^{\wedge} 2$, and the drain-to-bulk capacitance of each transistor is C_DB $=(1 / 3)$ C_ox $_{-} \mathrm{W}$ L.

If you couldn't solve part (b), you can assume that (W/L)_p $=2.5(\mathrm{~W} / \mathrm{L}) _\mathrm{n}$ for this part (not the correct answer to (b), of course.)
(d) [4 pts.] Find the ratio of the best case propagation delays.

t_PHL/t_PLH

If you couldn't solve (b), you can assume that (W/L)_p $=2.5$ (W/L)_n for this part (not the correct answer to (b), of course.)

Problem \#3

Bipolar Transistor Physics [10 points]

Note: the default npn transistor parameters do not apply to this problem!
Given:
$\mathrm{N} _\mathrm{dE}=10^{\wedge} 18 \mathrm{~cm}^{\wedge}-3$,
$\mathrm{N} _\mathrm{aB}=5 \mathrm{X} 10^{\wedge} 16 \mathrm{~cm}^{\wedge}-3$,
$\mathrm{N} _\mathrm{dC}=4 \mathrm{X} 10^{\wedge} 15 \mathrm{~cm}^{\wedge}-3$.
The base and emitter widths are $\mathrm{W}_{-} \mathrm{B}=\mathrm{W} _\mathrm{E}=0.25 \mathrm{um}$. The area of the emitter-base junction is $\mathrm{A}_{-} \mathrm{E}$ $=1000 \mathrm{um}^{\wedge} 2$ and the area of the base-collector junction is $\mathrm{A}_{-} \mathrm{C}=3000 \mathrm{um}^{\wedge} 2$. The electron diffusion coefficient in the base is $\mathrm{D} _\mathrm{nB}=10 \mathrm{~cm}^{\wedge} 2 / \mathrm{s}$ and the hole diffusion coefficient in the emitter is $\mathrm{D} _\mathrm{pE}=$ $5 \mathrm{~cm}^{\wedge} 2 / \mathrm{s}$. The charge on an electron is $\mathrm{q}=1.6 \times 10^{\wedge}-19 \mathrm{C}$.
(a) [5 pts.] For the bias condition where $\mathrm{V} _\mathrm{OUT}=2.5 \mathrm{~V}$, sketch the minority carrier concentration in the base on the graph below. Label the numerical value of $n_{-} p B(x=0)$.
(b) [5 pts.] Find the numerical value for the bias voltage V_BIAS for which the bipolar transistor just enters saturation (V _OUT $=0.2 \mathrm{~V}$).

Solutions!

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

