EE 105, Spring 1998
 Midterm \#2
 Professor R.T. Howe

(Note: Greek letters are in caps, "micro" is represented by a 'u'.)
Default bipolar transistor parameters:
npn: $B E T A o=100, V A n=50 \mathrm{~V}, V B E$, oh $=0.7 \mathrm{~V}, V C E, s a t=0.2 \mathrm{~V}, V$ th $=25 \mathrm{mV}$.
Default MOS transistor parameters: note that LAMBDA depends on L!
NMOS: $u_{n} C o x=50 u A V^{\wedge}-2, L A M B D A n=[0.1 / L] V^{\wedge}-1(\mathrm{~L}$ in um $), V_{T n}=1 V, C o x=2 f F / u m^{\wedge} 2, C_{n}=0.1 f F / u m^{\wedge} 2, C_{J S W n}=0.5 f F / u m$.
PMOS: $u p C_{o x}=50 u A V^{\wedge}-2, L A M B D A_{p}=[0.1 / L] V^{\wedge}-1(L$ in um $), V T_{p}=-1 V, C o x=2 f F / u m^{\wedge} 2, C_{p}=0.1 f F / u m^{\wedge} 2, C J S W_{p}=0.5 f F / u m$.

Problem \#1 : Bipolar Transresistance Amplifier [20 points]

```
Given:
    ISUP1 = 200uA; ROC1 = 750kOMEGA
    VsuP1, min = 0.15V,0.45V
    ISUP1 = 100uA; ROC2 = 200kOMEGA
    VSUP2, min = 0.3V
    IBIAS =-200uA, VOUT = 0V
```

(a) [2 pts.] Identify the stages of this two-stage transresistance amplifier by labeling the two-ports
 below with "CE", "CB", or "CC" for common-emitter, common-base, or common-collector. Also, label node " X ".
(b) [3 pts.] Find the numerical value of the small-signal input resistance of this amplifier, Rin.

Your answer need only be correct to within (+/-)5\% for full credit.
(c) [3 pts.] Find the numerical value of the small-signal output resistance of this amplifier, Rout.

Your answer need only be correct to within (+/-)5\% for full credit.
(d) [5 pts.] Find the numerical value of the "two-port" transresistance $R m$ of this amplifier (with $R s=$ infinity and $R L=$ infinity). Your answer need only be correct to within (+/-) 5% for full credit.
(e) [3 pts.] Find the numerical value of vout/is for $R s=500$ OMEGA and $R L=10 \mathrm{kOMEGA}$. If you couldn't solve parts (b)-(d), you can assume without loss of credit that $R_{\text {in }}=2.2$ kOMEGA, Rout $=4 \mathrm{kOMEGA}, R m=-185 \mathrm{kOMEGA}$. Needless to say, these are not the correct answers to (b)-(d).
(f) [2 pts.] Find the numerical value of the minimum output voltage VOUT, min of this amplifier.
(g) [2 pts.] Find the numerical value of the maximum output VoUt, max of this amplifier.

Problem \#2 : CMOS Digital Logic Gate [20 pts.]

(a) [5 pts.] Draw the schematic for this Logic gate, including the (W / L) 's of the transistors in (um/um). Substrate and well contacts are omitted for this simplified layout; you can consider that the "select" mask is the same as the "n well" mask.
(b) [2 pts.] Write the logic function implemented by this logic gate. If you couldn't do part (a), you can use the following circuit instead.

(c) [4 pts.] find the numerical value of $C d b$ for this logic gate in fF . You should identify clearly which areas on the layout contribute to $C d b$. Note that you don't need to have done part (a) in order to answer this part; useful device information is located on the cover page of the exam.
(d) [3 pts.] Find the numerical value of C_{w} for this logic gate in Ff. Note that you don't need to have done part (a) in order to answer this part. The wiring capacitance per unit area is $C_{w}=0.1 \mathrm{fF} / \mathrm{um}^{\wedge} 2$.
(e) [2 pts.] Find the numerical value of $C g$ for this logic gate in fF . Note that you don't need to have done part (a) in order to answer this part.
(f) [2 pts.] What is the worst-case charging current for the load capacitance $C L$ for this amplifier in uA? If you couldn't do part (a), you can use the substitute logic gate given in part (b).
(g) [2 pts.] What is the worst-case discharging current for Cl of this amplifier in uA ? If you couldn't do part (a), you can use the substitute logic gate given in part (b).

Problem \#3 : Current Sources [10 points]

(a) [4 pts.] Using exactly 4 transistors, draw the circuit schematic of a CMOS current source that will implement isUP (sourcing current from the positive supply), using IREF as a reference.
(b) [3 pts.] Given: IREF $=25 \mathrm{uA}$ and $\operatorname{ISUP}=75 \mathrm{uA}$. If all except one of the transistors have widths $\mathrm{W}=10 \mathrm{um}$ and all of the transistors have lengths $\mathrm{L}=2 \mathrm{um}$, find the width of the remaining transistor. There may be more than one correct answer to this part.
(c) [3 pts.] Find the maximum voltage Vout, max for which this current supply will have all of its transistors in operating the constant-current region. If you were unable to solve (b), assume that the width of the PMOS current-source output transistor is $\mathrm{W}=100 \mathrm{um}$.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
 If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

