EECS 105, Fall 1993
 Midterm \#2
 Professor R. T. Howe

Ground Rules:

- Closed book and notes; one formula sheet (both sides)
- Do all work on exam pages
- Answers accurate to within 10% will receive full credit
- Default bipolar transistoe parameters:
$n p n:(\text { beta })_{n}=100, V_{A n}=50 \mathrm{~V}, I_{S n}=10-16 \mathrm{~A}$.
pnp: $(\text { beta })_{p}=50, V_{A p}=25 \mathrm{~V}, I_{S p}=10^{-16} \mathrm{~A}$.
- Default MOS transistor parameters:

NMOS: $(m u)_{n} C_{o x}=50(\mathrm{mu}) \mathrm{AV}^{-2},(\text { lambda })_{n}=0.02 \mathrm{~V}^{-1}, V_{T n}=1 \mathrm{~V}$.
PMOS: $(m u)_{p} C_{o x}=25(\mathrm{mu}) \mathrm{AV}^{-2},\left(\right.$ lambda $_{p}=0.02 \mathrm{~V}^{-1}, V_{T p}=-1 \mathrm{~V}$.

Problem \#1. Matched Complementary Bipolar Transistor Design [12 points]

The cross sections, minority carrier concentrations, and circuit schematics are shown for matched npn and pnp vertical BJTs, operated in the forward-active region.

Given: all doping levels are matched and the emitter areas are identical

- $N_{d E}(\mathrm{npn})=N_{a E}(\mathrm{pnp})$
- $N_{a B}(\mathrm{npn})=N_{d B}(\mathrm{pnp})$
- $N_{d C}(\mathrm{npn})=N_{a C}(\mathrm{pnp})$
- $A_{E}(\mathrm{npn})=A_{E}(\mathrm{pnp})$

Given: the bias volatages for the two transistors are matched and both are in the forward-active region

- $V_{B E n}=V_{E B p}$
- $V_{C E n}=V_{E C p}$
(a) [5 pts.] In order for the npn and the pnp transistors to have matched collector currents, $I_{C n}=\left|I_{C p}\right|$, determine the numerical value of the base width of the pnp, $W_{B p}$. Given: the base width of the npn is $W_{B n}=0.2(\mathrm{mu}) \mathrm{m}$, the electron diffusion coefficient (diffusivity) is $D_{n}=20 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$, and the hole diffusivity is $D_{p}=10 \mathrm{~cm}^{2} \mathrm{~s}^{-1}-$ these are valid for the emitter, base, and collector of each transistor.
(b) [5 pts.] In order for the npn and the pnp transistors to matched base currents, $I_{B b n}=\left|I_{B p}\right|$, determine the numerical value of the emitter width of the pnp, $W_{E p}$. This part is independent of part (a). Given: the emitter width of the npn is $W_{E n}=0.1(\mathrm{mu}) \mathrm{m}$, and $D_{n}=20 \mathrm{~cm}^{2} \mathrm{~s}^{-1}, D_{p}=10 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.
(c) [2 pts.] Which transistor has the smaller Early voltage, V_{A} ? Explain why in one sentence.

Problem \#2. Two-Stage Transconductance Amplifier [24 points]

Given: $I_{\text {REF }}=100(\mathrm{mu}) \mathrm{A}, V_{L}=0(\mathrm{DC}), R_{S}=1 \mathrm{k}($ omega $), R_{L}=400 \mathrm{k}($ omega $)$
MOSEFTs: $(W / L)_{3,5,6,7}=10$ and $(W / L)_{4}=25$
(a) [4 pts.] Find the collector currents $I_{C I}$ and $I_{C 2}$. You can neglect the base currents $I_{B I}$ and $I_{B 2}$, as is customary for hand calculations.
(b) $\left[4\right.$ pts.] Find the numerical value of the input resistance, R_{i} of this amplifier. If you couldn't answer part (a), you can assume that $I_{C 1}=50(\mathrm{mu}) \mathrm{A}$ and that $I_{C 2}=75(\mathrm{mu})$ A for this part.
(c) $\left[4\right.$ pts.] Find the numerical answer value of the output resistance, R_{o} of this amplifier. If you couldn't answer part (a), you can assume that $I_{C 1}=50(\mathrm{mu}) \mathrm{A}$ and that $I_{C 2}=75(\mathrm{mu})$ A for this part.
(d) [4 pts.] Find the numerical value of the short-circuit transconductance G_{m} of the amplifier. Again, if you couldn't answer part (a), you can assume that $I_{C 1}=50(\mathrm{mu}) \mathrm{A}$ and that $I_{C 2}=75(\mathrm{mu}) \mathrm{A}$ for this part.
(e) [5 pts.] Find the numerical value of the laod current i_{l}, for a small-signal input voltage $v_{s}=2 \mathrm{mV}$. If you couldn't solve parts (b), (c), and (d), asumme for this part that $R_{i}=80 \mathrm{k}$ (omega), $R_{o}=500 \mathrm{k}$ (omega), and $G_{m}=7.5 \mathrm{mS}$.
(f) [3 pts.] What is the DC voltage at the base Q_{I} ? You can assume that $V_{B E}=0.7 \mathrm{~V}$ for the transistors in the forward-active region.

Problem \#3. Current-Source Design [14 points]

Given: $(W / L)_{1}=(W / L)_{2}=(W / L)_{3}$
(a) [5 pts.] Find $(W / L)_{1}$ such that $I_{R E F}=20(\mathrm{mu}) \mathrm{A}$.
(b) $\left[3 \mathrm{pts}\right.$.] Find $(W / L)_{4}$ such that $I_{O U T}=50(\mathrm{mu})$ A. If you couldn't solve part (a), assume that $(W / L)_{1}=$ 10.
(c) $\left[3\right.$ pts.] Find the numerical value of $r_{o c}$ for this current source, assuming that $I_{O U T}=50(\mathrm{mu}) \mathrm{A}$.
(d) [3 pts.] Assuming that the source-gate voltage for transistor M_{4} is $V_{S G 4}=1.4 \mathrm{~V}$. What is the largest DC output voltage $V_{O U T}$ for which transistor M_{4} remains in the saturation region?

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
 If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

