1. Let the angular position of the rod be measured by θ with respect to the vertical. When the force $F=12 \mathrm{lb}$ is applied, the two balls move in a circle relative to G. With respect to the mass center G, the absolute and relative angular momenta are equal. Thus

$$
\sum \mathbf{M}_{G}=\dot{\mathbf{H}}_{G}=\dot{\mathbf{H}}_{G}^{\prime}
$$

Denote by b the distance of G from the 2-lb ball. By moment balance,

$$
4(10-b)=2 b \quad \Rightarrow \quad b=\frac{20}{3}=6.67 \mathrm{in}
$$

It follows that

$$
\sum M_{G}=F\left(\frac{6+3.33}{12}\right)=9.33 \mathrm{lb}-\mathrm{ft}-\mathrm{sec}
$$

and

$$
\begin{aligned}
H_{G}^{\prime} & =\sum \rho_{i}\left(m_{i} \dot{\rho}_{i}\right)=\sum m_{i} \rho_{i}^{2} \dot{\theta} \\
& =\frac{4}{32.2}\left(\frac{3.33}{12}\right)^{2} \dot{\theta}+\frac{2}{32.2}\left(\frac{6.67}{12}\right)^{2} \dot{\theta}=0.0288 \dot{\theta} \mathrm{lb}-\mathrm{ft}-\mathrm{sec}
\end{aligned}
$$

Hence,

$$
\sum M_{G}=\dot{H}_{G}^{\prime} \Rightarrow \quad \ddot{\theta}=325 \mathrm{rad} / \mathrm{sec}^{2}
$$

2 lb
2. The change in kinetic energy before and after impact is

$$
\begin{aligned}
\Delta T & =\frac{1}{2} m_{1} v_{1}^{\prime 2}+\frac{1}{2} m_{2} v_{2}^{\prime 2}-\frac{1}{2} m_{1} v_{1}^{2}-\frac{1}{2} m_{2} v_{2}^{2} \\
& =\frac{1}{2} m_{1}\left(v_{1}^{\prime}+v_{1}\right)\left(v_{1}^{\prime}-v_{1}\right)+\frac{1}{2} m_{2}\left(v_{2}^{\prime}+v_{2}\right)\left(v_{2}^{\prime}-v_{2}\right)
\end{aligned}
$$

From the conservation of linear momentum,

$$
\begin{aligned}
& m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \\
& \Rightarrow \quad m_{1}\left(v_{1}^{\prime}-v_{1}\right)=-m_{2}\left(v_{2}^{\prime}-v_{2}\right) \\
& \Rightarrow \quad \Delta T=\frac{1}{2} m_{1}\left(v_{1}^{\prime}-v_{1}\right)\left[\left(v_{1}^{\prime}+v_{1}\right)-\left(v_{2}^{\prime}+v_{2}\right)\right] \\
& =\frac{1}{2} m_{1}\left(v_{1}^{\prime}-v_{1}\right)\left(v_{1}-v_{2}\right)\left[1-\frac{\left(v_{2}^{\prime}-v_{1}^{\prime}\right)}{\left(v_{1}-v_{2}\right)}\right]
\end{aligned}
$$

$$
=\frac{1}{2} m_{1}\left(v_{1}^{\prime}-v_{1}\right)\left(v_{1}-v_{2}\right)(1-e)
$$

As a result, $\Delta T=0$ if and only if $e=1$.
3. Since B moves in a circle of radius l about the fixed point A, both its velocity and acceleration are known. Attach a translating $x-y$ frame to B with the x-axis in the direction of $A C$. For the two points B and C on the $\operatorname{rod} B C$,

$$
\begin{equation*}
\mathbf{a}_{C}=\mathbf{a}_{B}+\mathbf{a}_{C / B}=\mathbf{a}_{B}+\boldsymbol{\omega}_{B C} \times\left(\boldsymbol{\omega}_{B C} \times \mathbf{r}_{C / B}\right)+\boldsymbol{\alpha}_{B C} \times \mathbf{r}_{C / B} \tag{1}
\end{equation*}
$$

Observe that

$$
A B=B C \quad \Rightarrow \quad \omega_{B C}=-\omega
$$

In addition,

$$
\begin{aligned}
& \mathbf{a}_{B}=\left(\mathbf{a}_{B}\right)_{n}+\left(\mathbf{a}_{B}\right)_{t}=\left(-l \omega^{2} \cos \theta-l \alpha \sin \theta\right) \mathbf{i}+\left(-l \omega^{2} \sin \theta+l \alpha \cos \theta\right) \mathbf{j} \\
& \boldsymbol{\omega}_{B C} \times\left(\boldsymbol{\omega}_{B C} \times \mathbf{r}_{C / B}\right)=-l \omega^{2} \cos \theta \mathbf{i}+l \omega^{2} \sin \theta \mathbf{j} \\
& \boldsymbol{\alpha}_{B C} \times \mathbf{r}_{C / B}=l \alpha_{B C} \sin \theta \mathbf{i}+l \alpha_{B C} \cos \theta \mathbf{j} \\
& \mathbf{a}_{C}=a_{C} \mathbf{i}
\end{aligned}
$$

Substitute into (1) and equate coefficients of \mathbf{j},

$$
\alpha_{B C}=-\alpha
$$

which is obvious because $A B=B C$. Equate coefficients of \mathbf{i},

$$
\begin{gathered}
a_{C}=-2 l \omega^{2} \cos \theta-2 l \alpha \sin \theta \\
B
\end{gathered}
$$

