
1. Let the angular position of the rod be measured by θ with respect to the vertical. When the 
force lb is applied, the two balls move in a circle relative to G. With respect to the mass 
center G, the absolute and relative angular momenta are equal. Thus 

12=F

GGG HHM && ′==∑  
Denote by b the distance of G from the 2-lb ball. By moment balance, 
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It follows that 
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Hence, 
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2. The change in kinetic energy before and after impact is 
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From the conservation of linear momentum, 
22112211 vmvmvmvm ′+′=+  

⇒ )()( 222111 vvmvvm −′−=−′  

⇒ )]())[((
2
1

2211111 vvvvvvmT +′−+′−′=Δ  

 ⎥
⎦

⎤
⎢
⎣

⎡
−

′−′
−−−′=

)(
)(1))((

2
1

21

12
21111 vv

vvvvvvm  



 )1)()((
2
1

21111 evvvvm −−−′=  

As a result,  if and only if . 0=ΔT 1=e
 
3. Since B moves in a circle of radius l about the fixed point A, both its velocity and acceleration 
are known. Attach a translating x-y frame to B with the x-axis in the direction of AC. For the two 
points B and C on the rod BC, 
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Observe that 
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In addition, 
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Substitute into (1) and equate coefficients of j, 
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which is obvious because . Equate coefficients of i, BCAB =
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