University of California at Berkeley
College of Engineering
Department of Electrical Engineering
and Computer Sciences

R.T. Howe, Fall 1997

EECS 105

Midterm I: October 8, 1997

Closed book and notes; one $8.5^{\prime \prime}$ X 11 "formula sheet (both sides)
Do all work on exam pages
You have 80 minutes; use your time wisely!

Problem \#1 MOSFET LAYOUT [18 points]

Process Flow:

0 . Starting material: p-type silicon wafer

1. Grow 0.5 um of thermal SiO 2 and pattern using the oxide mask.
2. Grow $250 \mathrm{~A}=0.025$ um of thermal SiO 2 for the gate oxide.
3. Deposit 0.5 um of $n+$ polysilicon and pattern using the polysilicon mask.
4. Implant arsenic (dose $Q a=10^{\wedge} 13 \mathrm{~cm}^{\wedge}-2$) and anneal to obtain a junction depth $x j=0.5$ um. The arsenic does not penetrate the 0.5 um-thick oxide.
5. Deposit 0.5 um of CVD SiO2 and pattern using the contact mask.
6. Deposit 1 um of aluminum and pattern using the metal mask.
a) [7 pts.] Accurately sketch the fabricated structure along the cross section A-A'. Use the horizontal line below as the surface of the silicon wafer. The vertical scale on should be followed in sketching the deposited layers. The x axis on the layout and the dimensions of the mask patterns are sufficient for you to have a reasonably accurate cross section. Label all layers and use the "dot" fill pattern for the polysilicon layer and the "slash" fill pattern for the aluminum layer.

b) [7 pts.] Accurately sketch the fabricated structure along the cross section B-B'. Use the horizontal line below as the surface of the silicon wafer. The vertical scale should be followed in sketching the deposited layers. The x axis on the layout and the dimensions of the mask patterns are sufficient for you to have a reasonably accurate cross section. Label all layers and use the "dot" fill pattern for the polysilicon layer and the "slash" fill pattern for the aluminum layer.

c) [4 pts.] There are three metal interconnections to this device, which are labeled " 1 ", " 2 ", and " 3 " on the layout. Draw the schematic for this device, including the symbol (or symbols) for the MOSFET (or MOSFETs) located between "1", " 2 ", and " 3 ". Be sure to indicate the (W / L) ratios for the transistor or transistors.

A new non-linear resistive element has a current-voltage characteristic given by:

$$
\text { Isup }=(1 / 5 \text { kilo-Ohms })^{*}(V \sup / 1 \text { Volt })^{\wedge}(1 / 2)
$$

a) [3 pts.] Plot I sup as a function of V sup on the graph below. Your plot should be accurate for V sup $=0,1$, and 4 V .

b) $[4 \mathrm{pts}$. $]$ Find the numerical value of the small-signal resistance r at the operating point V sup $=4 \mathrm{~V}$.
c) $[6$ pts.J We now use the resistive element as the load in an inverter. Using the load-line technique on the $I d=I$ sup versus Vout graph, sketch the transfer curve Vout versus Vin on the graph below. You should have intersection points for input voltages Vin= $0,1,2,2.5,3$, and 4 V .

Given: $M U n C o x=50 u A / V^{\wedge} 2, V \operatorname{tn}=1 \mathrm{~V},(W / L)=4 / 2=2$, and $L A M B D A \mathrm{n}=0$

Id, Isup [uA]

d) [4 pts.] Find the numerical value of the slope $A v$ of the transfer curve found in part (c) at V in $=2.5 \mathrm{~V}$. Given: the MOSFET is saturated for this value of Vin. Note: it is not necessary to solve part (c) to answer this part.

Given: $q=1.6 \times 10^{\wedge}-19 \mathrm{C}$, EPSILONs $=1.04 \times 10^{\wedge}-12 \mathrm{~F} / \mathrm{cm}, 1 \mathrm{~A}=10^{\wedge}-8 \mathrm{~cm} ; 1 \mathrm{um}=10^{\wedge}-4 \mathrm{~cm}$
a) [4 pts .] From the plot of charge stored (on the p-side of the junction) versus the diode voltage below, the charge for $V \mathrm{~d}=0 \mathrm{~V}$ is $-8 \times 10^{\wedge}-8 \mathrm{~cm}-2$. What is the overall depletion width X do for this case?

b) [4 pts.] Sketch the capacitance (units: F/cm2) versus diode voltage for this metal/p/n/metal structure on the graph below.

$$
\text { Given: } X \mathrm{~d}=4000 \mathrm{~A} \text { for } V \mathrm{~d}=-2.4 \mathrm{~V} \text { and } X \mathrm{~d}=6000 \mathrm{~A} \text { for } V \mathrm{~d}=-6.4 \mathrm{~V}
$$

If you couldn't solve part (a), you can assume without loss of credit that $X \mathrm{do}=1500 \mathrm{~A}$ for $V \mathrm{~d}=0 \mathrm{~V}$ (\ldots not the correct answer to (a), of course). Your plot should be accurate at these voltages.

c) [4 pts.] Sketch the charge density $R O(\mathrm{x})$ through the structure for $V \mathrm{~d}=-10 \mathrm{~V}$ on the graph below. The relative magnitude of the densities and any sheet charges (shown as delta function "spikes") should be correct; there is no need to find numerical values.

d) [3 pts.] For the case where the small-signal voltage is $V \mathrm{~d}(t)=5 \mathrm{mV} \sin \left(2 \mathrm{pi}^{*} 10^{\wedge} 6^{*} \mathrm{t}\right)$ and the DC bias is $V \mathrm{~d}=-10 \mathrm{~V}$, find the small-signal current $I \mathrm{~d}$ (t) into the structure. Given: the area of the structure is $400 \mathrm{um}^{\wedge} 2$.

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

