University of California at Berkeley
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

R. T. Howe (Spring 1993)

EECS 105
 Final Examination: May 17, 1993

Ground Rules:

- Closed book; three $81 / 2$ " x 11" crib sheets (both sides)
- Do all work on exam pages
- Answers within $\pm 10 \%$ of the correct answer will recieve full credit.
- Default bipolar transistor parameters:
npn. $\beta_{n}=100, V_{\mu_{n}}=100 \mathrm{~V}, \mathrm{C}_{n}=15 \mathrm{pF}, \mathrm{C}_{\mu 4}=1 \mathrm{pF}$
pnp. $\beta_{p}=50, V_{u_{p}}=50 \mathrm{~V}, \mathrm{C}_{n}=30 p \mathrm{~F}, \mathrm{C}_{44}=2 p \mathrm{~F}$
- Default MOS transistor parameters:

NMOS: $\mu_{n} \mathrm{C}_{o x}^{\prime}=25 \mu \mathrm{~N}^{-2}, \lambda_{\mathrm{n}}=0.01 \mathrm{~V}^{-1}, V_{T_{n}}=1 \mathrm{~V}$
FWOS: $\mu_{\beta} \mathrm{C}_{\alpha x}^{1}=10 \mu \mathrm{~N}^{-2}, \lambda_{\beta}=0.02 \mathrm{~V}^{-1}, V_{T_{p}}=-1 \mathrm{~V}$

Page 1

1. Two-Stage BiCMOS Differential Amplifier [20 points]

(a) [2 points] Draw the differential half circuit for Stage 1 .
(b) [4 points] Draw the differential two-port small-signal model for Stage 1 and find the numerical values of its parameters.

Page 2

(c) [4 points] Draw the differential two-port small-signal model for Stage 2 and find the numerical values of its parameters.
(d) [4 points] Find the numberical value of the small-signal gain vo/s.

Page 3

(e) [2 points] What is the maximum DC common-mode input voltage, VCM,max, for which all devices are forward active (BJT) or saturated (MOS)?
(f) [2 points] What is the minimum DC common-mode input voltage, VCM, min, for wich all devvices are forward active (BJT) or saturated (MOS)?

(g) [2 points] What is the DC power dissipation for this amplifier?

Page 4

2. Pictorial MOS Electrostatics [20 points]

A MOS C-V curve is shown above for an $n+$ polysilicon gate and a p-type substrate, with $\mathrm{Na}=1 \mathrm{E}-16 \mathrm{~cm}^{-3}$. (a) [5 points] Sketch below the C-V curve for this structure when the oxide thickness tox is reduced. Your plot should be qualitatively correct -- the original C-V curve is reproduced to make comparison easier.

(b) [5 points] Sketch below the C-V curve for the complemenatary structure, for which the gate is $\mathrm{p}+$ polysilicon and the substrate is n-type with $\mathrm{Na}=1 \mathrm{E}-16 \mathrm{~cm}^{-3}$. Your plot should be qualitatively correct - - the original $\mathrm{C}-\mathrm{V}$ curve is reproduced to make comparison easier.

Page 5
(c) [5 points] Sketch the electrostatic potential throught the original structure when it it sin thermal equilibrium $(\mathrm{VG}=0 \mathrm{~V})$. Given the polysilicon potential is $\phi^{\mathrm{n}+=}=0.55 \mathrm{~V}$, surface potential $\phi^{\mathrm{s}=\phi}(\mathrm{x}=0)=0 \mathrm{~V}, \mathrm{x}=0$ corresponds to the oxide/silicon interface.

(d) [5 points] Sketch the electrostatic potential throught the original structure when $\mathrm{VG}_{\mathrm{G}}=2 \mathrm{~V}$

Page 6
3. MOS Amplifier Frequency Response [20 points]

$$
\begin{aligned}
\left(\frac{W}{L}\right)_{1} & =\left(\frac{W}{L}\right)_{2}=\left(\frac{W}{L}\right)_{3} \\
& =\left(\frac{W}{L}\right)_{4}=\left(\frac{W}{L}\right)_{5}=50
\end{aligned}
$$

(a) [4 points] Find the DC voltages at the drain of M_{2} and at the source of M 2 .
(b) [4 points] Find the small-signal voltage gain $\mathrm{avo}=\mathrm{vo} / \mathrm{vs}$ at low frequencies (consider Cc open).

Page 7

(c) [4 points] Given that the magnitude (in dB) plot for the voltage gain has a pole at 2 kHz (see plot), find the numerical value of Cc. You may assume that any Miller capacitor dominates all other device capacitors (e.g., Cgs).

(d) [4 points] Find the frequency for which the magnitude of the small-signal voltage gain $|\mathrm{av}| \mathrm{dB}=0 \mathrm{~dB}$. If you couldn't solve part (b), assume that $\mathrm{avo}=14,000$.
(e) [4 points] Given that the channel length of all MOSFETSs is $\mathrm{L}=3 \mu \mathrm{~m}$ and that the oxide capacitance per unit area is $\mathrm{Cvo}_{\mathrm{vo}}=14,000$.
(d) [4 points] Given that the channel length of all MOSFETs is $\mathrm{L}=3 \mu \mathrm{~m}$ and that the oxide capacitance per unit area is Cox $=0.5 \mathrm{fF} / \mu \mathrm{m}^{2}(1 \mathrm{fF}=1 \mathrm{E}-15 \mathrm{~F})$, find the differential imput capacitance of this op amp.

Page 8

4. Dynamic MOS Logic [20 points]

(a) [4 points] What logic function is implemented by this dynamic logic gate? Use the + sign for "OR", a dot for "AND", and an oversocre for "NOT". There is no need to simplify the expression. Hint: transistor M1 fuctions to "pre-ground" the load capacitance CL, using clock waveform $\underset{\phi}{ }(\mathrm{t})$.
(b) [4 points] How short a 5-V clock pulse (length T_{ϕ}) can be used to pre-gound the load capacitance, assuming that the minimum $\mathrm{T}_{\phi}^{\boldsymbol{\phi}}$ is 5 times the propagation delay found in discharaging CL from 5 V ot 0 V ? Hint: consider the appropriate transistor to be saturated in finding the propagation delay.

Page 9

(c) [4 points] Sketch $\mathrm{VE}(\mathrm{t})$ on the graph below, for the case where $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are 0 V when $\mathrm{t}=\mathrm{T}_{\phi}$. You are given that $\mathrm{VE}\left(0^{-}\right)=5 \mathrm{~V}$ just before the clock transitions to 5 V at $\mathrm{t}=0$.
(d) [4 points] What is the propagation delay for the situation in part (c) (all inputs low when the clock goes low)? You can consider that M 2 is so wide that it fuctions as a short-circuit when it's "on".
(e) [4 points] What is the propagation delay when $\mathrm{A}, \mathrm{B}, \mathrm{D}=0$ and $\mathrm{C}=1(5 \mathrm{~V})$ when the clock $\boldsymbol{\phi}^{(\mathrm{t}) \text { goes low? }}$? If you couldn't solve part (c), assume that its answer was $\mathrm{t}_{\mathrm{p}}=1 \mathrm{~ns}$.

5. Small-signal CMOS current amplifier [20 points]

(a) [4 points] Redraw the schematic, replacing all transistor current sources by the current-source symbol (with the numerical value indicated) and all transistor voltage sources by batteries (with the numberical value indicated).
(b) [4 points] What is the numerical value of the input resistance Ri of this current amp?

Page 11

(c) [4 points] What is the numerical value of the output resistance (don't include the load resistor, of course!) for this current amp?
(d) [4 points] What is the short-circuit current gain Ai (vo a small-signal short to ground) for this current amplifier? Draw the two-port model for the amp.
(e) [4 points] What is the overall current gain io/iin with the $100 \mathrm{k}_{\Omega}$ load resistor connected to the amplifier?

Page 12

© 1994 by R. T. Howe translated to HTML by Walter Hsiao Eta Kappa Nu (November 1995)

