
MSE 113 / ME 124 Fall 2008  Midterm 2 solution. 

Problem 1 

a) Some acceptable answers:   

 Micro-cracking 

 Bonds breaking 

 Creep 

 Diffusion  

 Polymer crazing 

 Grain boundary sliding 

 Fiber pull-out 

 

b) Use Frank’s Rule: 

If b2 > b1
2+ b2

2  then the reaction will occur 

b2 = (a2/22)*(12+12+02) = (1/2) a2 

b1
2+ b2

2 = 2 b1
2= 2*( a2/62)*(22+12+12) = (1/3) a2 

 

(1/2) a2  > (1/3) a2   

The reaction will take place. 

 

c) The dislocation reaction results in a stacking fault 

 

d)  

 
The repelling stress on dislocation 1 due to dislocation 2 is 

 

 
 

The repelling force on dislocation 1 is then  



 

 
 

Now, if we look at the work done to move dislocation 1 away from dislocation 2 by a distance 

dw, or in other words, we increase w by dw: 

 

 
 

The equilibrium separation of the two dislocations will be defined as the width when the work 

to increase the separation by dw equals the work to move a dislocation by dw: 

 

 
 

Since |b1|=|b2|, we’ll call it b 

 

 
 

 
 

e) b for the partial dislocations is a/√6 

 
w = 11.5 nm 

 

which is about 30 times larger than the lattice spacing.  This makes sense in the alloy 

that we have. 

 



Problem 2 

a) Some acceptable answers:   

 Toughness, especially at low temperatures 

 Fatigue resistance 

 Low density 

 Oxidation resistance 

 Thermal stability 

b) r/t=12, so a thin walled approximation is valid. 

 

Stresses: 

σzz = σrr = σr  = σ z = σrz =0 because the pipe is open ended. 

 

σ  = pr/t = p* [1.5”/(1/8)”]=12*p 

 

Strains: 

 = ln (r/r0) 

rr = ln(t/t0)= 0 as σrr = 0 

 

Strain Rate: 

 
 

*Assume that the lines in the plot are parallel. 

 

We can solve for H at constant stress (use the given line on the plot), or we can solve for it by 

knowing that the slope of the strain rate vs. 1/T plot is equal to –H/2.303 k: 

 

 
 

 

 
 

Solve for m at constant temperature: 

 

 
Or, we can solve for m knowing that the slope of the strain rate vs. stress plot equals m.  We are 

given that the slope=8, so m=8 

 



Now, we can find σ0 by setting both T and σ11 constant: 

 

 
 

 
 

c) t =60 days = 1440 hours 

σ  = 12p = 12*800 psi = 9600 psi 

T = 1250+460 = 1710 R 

 

 

 

 

 
New r: 

 
 

 
 

We will ignore tertiary creep to be conservative. 

 

 
 

 
 

New t: 

rr = ln(t/t0)=  0 , so t=t0. 

 

Dnew = 1.585*2= 3.17” 

tnew = 1/8” 



 

Problem 3 

a) σy = Py/A = Py/(0.2m*0.1m) = 50*Py   

Pyeild = σY*A = σY/50 

KI = 1.12 σ √(π a) = 1.12 * 50 * P (π * 0.1 x 10-2 m)1/2 

 Pfracture = KIC /(1.12*50*(π * 0.1 x 10-2 m)1/2) 

 

 

Material PFracture (MN) PYield (MN) Failure mode 

High-strength steel 20.7 34 Fracture 

Mild steel 63.7 18.8 Yield 

 

Since the load to fracture is lower than the load to yield in the high-strength steel, it will fracture 

first.  Since the load to yield is lower than the load to fracture in the mild steel, it will yield first.  

The material that yields before it fractures is inherently safer since you can possibly observe 

some yielding and have time to respond.  The high-strength steel would fracture spontaneously 

at 20.7 MN with no warning.  As the weight is 18MN, you would probably be safe assuming that 

your calculations are correct.  The danger is if you are not correct (i.e. this surface flaw is not the 

worst flaw in the rod), the rod would break with no warning, sending the 18 MN mass at your 

head.  The mild steel has a yield load that is just slightly larger than the hanging load, so it would 

probably not fail, but if for some reason it did start to go, you would be able to see it yielding 

and would have some time to react (i.e. run out of the way). 

 

You should go for the challenge, and you should pick the mild steel because it is safer. 

 

b) To determine the validity of using the K approach, we need to know if small-scale yielding 

applies (ry << a, W-a): 

 

 
 

ry (high-strength steel) = 2 x 10-4 m 

ry (mild steel) =  0.01 m = 1 cm 

 

As we can see, the high-strength steel shows small scale yielding, so we can use the K approach.  

The mild steel, however, has a plastic zone size on the order of the same dimensions as a and 

W-a.  This means that the K approach is not really valid.  We can proceed to use it, though, if we 

consider the fact that a plastically deforming material can absorb more energy prior to failure 

than a perfect linear-elastic material (e.g. consider the area under the stress-strain curve for a 



ceramic versus a metal).  Since the fracture toughness of our material is actually a lot higher 

than we predicted due to the plasticity, we can use the K approach to find a lower bound on the 

fracture stress, and therefore, load to fracture. 

 

We also want to know if we are in plane-strain (ry <<B): 

 

B = 10 cm = 0.1 m  

 

We are definitely in plane strain for high-strength steel, and so KIC is not conservative, it is 

accurate. 

 

For the mild steel, we are on the cusp of plane-strain (B=10 ry), and we can’t know for sure that 

the KC has leveled off completely.  As we saw above, we have a lot of plasticity happening in our 

bar.  We are very conservative in using so KIC to predict fracture in the mild steel. 


