EE 105 Midterm I

Fall 2001

Prof. Roger T. Howe

1. Silicon-on-Insulator (SOI) Resistor [17 points]

- 1. *Starting material:* silicon-on-insulator substrate, which is a 500 um-thick, heavily doped n-type silicon wafer, on which a 0.25 um-thick "buried oxide" is grown, over which is grown (by a special process) a 0.25 um-thick layer of n-type single crystal silicon. The 0.25 um-thick silicon layer is doped with phosphorus at a concentration of 3×10^{16} cm⁻³
- 2. Implant boron with dose $Q_a = 5 \times 10^{13} \text{ cm}^{-2}$ and anneal so that the boron concentration is uniform through the 0.25 um-thick silicon layer.
- 3. Pattern the 0.25 um-thick silicon layer using the Silicon Mask (clear field).
- 4. Deposit 0.5 um of CVD SiO₂ and pattern using **Contact Mask 1** (dark field).
- 5. Pattern the sandwich of the 0.25 um-thick "buried oxide" and the 0.5 um-thick CVD oxide using **Contact Mask 2** (dark field). *Note*: the resulting contact hole reaches to the underlying n-type silicon substrate.
- 6. Deposit 0.5 um of aluminum and pattern using the Metal Mask (clear field).

Given: mobilities for this problem are $u_n = 1000 \text{ cm}^2/(\text{Vs})$ and $u_p = 400 \text{ cm}^2/(\text{Vs})$. Count the "dogbone" contact areas as 0.65 square each in finding the resistance. The permittivity of oxide is $e_{ox} = 3.45 \text{ x} 10^{-13} \text{ F/cm}$.

a. [5 pts.] Sketch the cross section *A*-*A*' on the graph below after step 6. Identify all layers clearly.

b. [3 pts.] What is the sheet resistance R-square of the 0.25 um-thick silicon layer?

c. [3 pts.] What is the resistance R_{1-2} between terminals 1 and 2 in ohms? If you couldn't solve part (a), use R-square = 200 ohms (not a correct answer to (a)).

d. [4 pts.] Fill in the boxes in the circuit model below with the correct elements *and* their values. Your answer to part (c) should be helpful. You can assume that V_1 and V_2 are each greater than 2 V and that $V_3 = 0$ V.

e. [2 pts.] Now if the voltages of terminals 1 and 2 are each lowered to approximately -0.25 V, with terminal 3 (the n-type substrate) being grounded, what is the effect on R_{1-2} compared to the case in part (d)? Justify your answer.

2. Unusual junction charge-storage element [16 pts.]

a. [4 pts.] The plot is the internal stored charge q_J associated with the + terminal of the charge-storage element, as a function of the applied voltage v_D . The DC current I_D through the device is zero. Draw the small-signal equivalent circuit for the case where $V_D = -0.5$ V. *Hint*: your answer should have three circuit elements, two of which are the small-signal voltage source and the resistor.

b. [4 pts.] For the case where $V_D = -0.5 \text{ V}$ and $v_d(t) = [200 \text{ mV}]\cos(\text{omega*t})$, with omega = 2pi(1000) radians/ second, plot the current waveform $i_D(t)$ on the graph below. *Hint*: the time constant for this case is orders of magnitude smaller than 1 ms.

file:///C|/Documents%20 and%20 Settings/Jason%20 Raftery/My%20 Do...ring%20105%20-%20 Fall%202001%20-%20 Howe%20-%20 Midterm%201.htm/s20

c. [4 pts.] Plot the voltage $v_R(t)$ on the graph below for the case where $V_D = -2 V$, $v_d(t) = [200 \text{ mV}]\cos(\cos(2\pi t))$, with $\cos(2\pi t) = 2pi(1000)$ radians/second. The same hint applies as in part (b).

- d. [4 pts.] Recall that in order for a small-signal model to be valid, the increment in applied voltage must not be so large that the value of the small-signal element changes.
 - i. [2 pts.] Over the range -9 V < V_D < 0 V, what value of V_D should we select that will maximize the amplitude of the voltage $v_d(t)$ we can apply, while maintaining an exact proportionality between the current $i_d(t)$ and dv_d/dt ? Justify your answer.

ii. [2 pts.] What is the numerical value of the amplitude of the current $i_d(t)$ corresponding to the case where the voltage $v_d(t)$ has its maximum amplitude. It is given that the small-signal voltage is a cosine function $v_d(t) = v_d \cos(\text{omega}*t)$, with omega = 2pi(1000) radians/second and $v_d *$ being the maximum amplitude. The same hint applies as in part (b).

3. Frequency response measurements [17 pts.]

The above circuit models a test set-up to measure the input impedance of an IC amplifier. The cable has a capacitance $C_c = 5$ pF, the chip has a pad and interconnect apacitnce $C_p = 2$ pF, and the amplifier's input capacitance is $C_{in} = 1$ pF. The sinusoidal source has an amplitude of 100 mV and a source resistance $R_s = 50$ ohms.

a. [3 pts.] Find the transfer function V_{in} / V_s in the standard form of a low-pass filter.

b. [3 pts.] Find the amplitude of $v_{in}(t)$ when the source has a frequency omega = 2.5 Grad/s.

c. [4 pts.] You notice that your measurements don't agree with the prediction from part (b), so you inspect your test setup. You discover that the cable connector wasn't fully inserted, so there's a small gap between it and the output of the source. This gap is modeled by a capacitor of value $C_g = 2 \text{ pF}$, as shown in the schematic below.

Find the transfer function V_{in} / V_s . Hint: the denominator should be in the form of a low-pass fitler.

d. [4 pts.] Sketch the magnitude of V_{in} / V_s in dB versus frequency on the plot below. Note that your low and high-frequency asymptotes should be accurate - use the "straight-line" approximation. If you couldn't solve part (c), you can assume that the low frequency magnitude is -20 dB (not the correct answer, of course).

e. [3 pts.] For the circuit in part (c), find the phase of V_{in} for the case where the source frequency is omega = 2.5 Grad/s. *Hint*: your result in part (d) may be helpful.