EE 105 Midterm I

Fall 2001

Prof. Roger T. Howe

1. Silicon-on-Insulator (SOI) Resistor [17 points]

Process Sequence:

1. Starting material: silicon-on-insulator substrate, which is a 500 um-thick, heavily doped n-type silicon wafer, on which a 0.25 um-thick "buried oxide" is grown, over which is grown (by a special process) a 0.25 umthick layer of n-type single crystal silicon. The 0.25 um-thick silicon layer is doped with phosphorus at a concentration of $3 \times 10^{16} \mathrm{~cm}^{-3}$
2. Implant boron with dose $\mathrm{Q}_{\mathrm{a}}=5 \times 10^{13} \mathrm{~cm}^{-2}$ and anneal so that the boron concentration is uniform through the 0.25 um-thick silicon layer.
3. Pattern the 0.25 um-thick silicon layer using the Silicon Mask (clear field).
4. Deposit 0.5 um of CVD SiO_{2} and pattern using Contact Mask 1 (dark field).
5. Pattern the sandwich of the 0.25 um-thick "buried oxide" and the 0.5 um-thick CVD oxide using Contact Mask 2 (dark field). Note: the resulting contact hole reaches to the underlying n-type silicon substrate.
6. Deposit 0.5 um of aluminum and pattern using the Metal Mask (clear field).

Given: mobilities for this problem are $u_{n}=1000 \mathrm{~cm}^{2} /(\mathrm{Vs})$ and $u_{p}=400 \mathrm{~cm}^{2} /(\mathrm{Vs})$. Count the "dogbone" contact areas as 0.65 square each in finding the resistance. The permittivity of oxide is $\mathrm{e}_{\mathrm{ox}}=3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}$.
a. [5 pts.] Sketch the cross section $\boldsymbol{A}-\boldsymbol{A}^{\prime}$ on the graph below after step 6. Identify all layers clearly.

b. [3 pts.] What is the sheet resistance R-square of the 0.25 um-thick silicon layer?
c. [3 pts.] What is the resistance R_{1-2} between terminals 1 and 2 in ohms? If you couldn't solve part (a), use Rsquare $=200$ ohms (not a correct answer to (a)).
d. [4 pts.] Fill in the boxes in the circuit model below with the correct elements and their values. Your answer to part (c) should be helpful. You can assume that V_{1} and V_{2} are each greater than 2 V and that $\mathrm{V}_{3}=0 \mathrm{~V}$.

e. [2 pts.] Now if the voltages of terminals 1 and 2 are each lowered to approximately -0.25 V , with terminal 3 (the n-type substrate) being grounded, what is the effect on R_{1-2} compared to the case in part (d)? Justify your answer.
2. Unusual junction charge-storage element [16 pts.]

a. [4 pts.] The plot is the internal stored charge q_{J} associated with the + terminal of the charge-storage element, as a function of the applied voltage v_{D}. The DC current I_{D} through the device is zero. Draw the small-signal equivalent circuit for the case where $V_{D}=-0.5 \mathrm{~V}$. Hint: your answer should have three circuit elements, two of which are the small-signal voltage source and the resistor.
b. [4 pts .] For the case where $\mathrm{V}_{\mathrm{D}}=-0.5 \mathrm{~V}$ and $\mathrm{v}_{\mathrm{d}}(\mathrm{t})=[200 \mathrm{mV}] \cos ($ omega*t $)$, with omega $=2$ pi (1000) radians $/$ second, plot the current waveform $\mathrm{i}_{\mathrm{D}}(\mathrm{t})$ on the graph below. Hint: the time constant for this case is orders of magnitude smaller than 1 ms .

c. [4 pts.] Plot the voltage $v_{R}(t)$ on the graph below for the case where $V_{D}=-2 V, v_{d}(t)=[200 \mathrm{mV}] \cos$ $($ omega*t), with omega $=2 p i(1000)$ radians/second. The same hint applies as in part (b).

d. [4 pts.] Recall that in order for a small-signal model to be valid, the increment in applied voltage must not be so large that the value of the small-signal element changes.
i. [2 pts.] Over the range $-9 \mathrm{~V}<\mathrm{V}_{\mathrm{D}}<0 \mathrm{~V}$, what value of V_{D} should we select that will maximize the amplitude of the voltage $\mathrm{v}_{\mathrm{d}}(\mathrm{t})$ we can apply, while maintaining an exact proportionality between the current $\mathrm{i}_{\mathrm{d}}(\mathrm{t})$ and $\mathrm{dv}_{\mathrm{d}} / \mathrm{dt}$? Justify your answer.
ii. [2 pts.] What is the numerical value of the amplitude of the current $i_{d}(t)$ corresponding to the case where the voltage $\mathrm{v}_{\mathrm{d}}(\mathrm{t})$ has its maximum amplitude. It is given that the small-signal voltage is a cosine function $\mathrm{v}_{\mathrm{d}}(\mathrm{t})=\mathrm{v}_{\mathrm{d}} * \cos \left(\right.$ omega*t), with omega $=2 \mathrm{pi}(1000)$ radians/second and $\mathrm{v}_{\mathrm{d}} *$ being the maximum amplitude. The same hint applies as in part (b).
3. Frequency response measurements [17 pts.]

The above circuit models a test set-up to measure the input impedance of an IC amplifier. The cable has a capacitance $\mathrm{C}_{\mathrm{c}}=5 \mathrm{pF}$, the chip has a pad and interconnect apacitnce $\mathrm{C}_{\mathrm{p}}=2 \mathrm{pF}$, and the amplifier's input capacitance is $C_{i n}=1 \mathrm{pF}$. The sinusoidal source has an amplitude of 100 mV and a source resistance $R_{s}=50$ ohms.
a. [3 pts.] Find the transfer function $V_{i n} / V_{s}$ in the standard form of a low-pass filter.
b. [3 pts.] Find the amplitude of $\mathrm{v}_{\mathrm{in}}(\mathrm{t})$ when the source has a frequency omega $=2.5 \mathrm{Grad} / \mathrm{s}$.
c. [4 pts.] You notice that your measurements don't agree with the prediction from part (b), so you inspect your test setup. You discover that the cable connector wasn't fully inserted, so there's a small gap between it and the output of the source. This gap is modeled by a capacitor of value $\mathrm{C}_{\mathrm{g}}=2 \mathrm{pF}$, as shown in the schematic below.

Find the transfer function $V_{\text {in }} / V_{s}$. Hint: the denominator should be in the form of a low-pass fitler.
d. [4 pts.] Sketch the magnitude of $\mathrm{V}_{\text {in }} / \mathrm{V}_{\mathrm{s}}$ in dB versus frequency on the plot below. Note that your low and high-frequency asymptotes should be accurate - use the "straight-line" approximation. If you couldn't solve part (c), you can assume that the low frequency magnitude is -20 dB (not the correct answer, of course).

e. [3 pts.] For the circuit in part (c), find the phase of $V_{i n}$ for the case where the source frequency is omega $=$ 2.5 Grad/s. Hint: your result in part (d) may be helpful.

