EECS 105 Spring 1998 Final

1. CMOS Transconductance Amplifier [35 pt]

(a) [3 pts$]$ Find the numerical value of RREF.
(b) [3 pts] Redraw the circuit with all currents supplies replaced by symbols.
(c) $[3 \mathrm{pts}]$ Find the numerical values of the DC currents and voltages listed in the table below.

M1	ID1	V
M2	ID2	
M3	ID3	

(d) [4 pts] This three-stage amplifier can be modeled as the cascade below. Find the numerical value of ROUT, 2. Answers within $\pm 5 \%$ of the correct answer will receive full credit.

(e) [4 pts] Find the numerical value of the output resistance RoUT. Answers within $\pm 5 \%$ of the correct answer will receive full credit.
(f) [5 pts] Find the numerical value of the overall transconductance of the amplifier, iOUT/vS, including the effects of RS and RL - the values of which are both $50 \mathrm{k} \Omega$. RoUT, 2 .

Answers within $\pm 5 \%$ of the correct answer will receive full credit.
(g) [5 pts] Find the maximum value of the output current iOUT, max for which all transistors remain in their constant-current regions. (Note that "maximum" means "most positive" in this case.)
(h) [4 pts] Find the minimum value of the output current iOUT, min for which all transistors remain in their constant-current regions. (Note that "minimum" means "most negative" in this case.)
i. [4 pts] On the graph below, sketch iOUT versus vS. Your plot should incude the limits to iOUT that you found in parts (g) and (h). If you couldn't solve these parts, you can assume that iOUT, $\max =70 \mu \mathrm{~A}$ and iOUT, $\min =-100 \mu \mathrm{~A}$

2. Frequency Response of CMOS Transconductance Amplifier

Note that a wiring capacitance $\mathrm{CW}=50 \mathrm{fF}$ and a load capacitance $\mathrm{CL}=500 \mathrm{fF}$ have

Been added to the schematic.
a. [5 pts] Find the open-circuit time constant for the capacitance between node "IN" and ground. Use the Miller theorem to transform any capacitance connected from "IN" to another node into an equivalent capacitance to ground. Answers within $\pm 5 \%$ of the correct answer will receive full credit.
(b) [5 pts] Find the open-circuit time constant for the capacitance between node "A" and ground. Use the Miller theorem to transform any capacitance connected from "A" to another node into an equivalent capacitance to ground. Answers within $\pm 5 \%$ of the correct answer will receive full credit.
(c) [5 pts] Find the open-circuit time constant for the capacitance between node "B" and ground. Use the Miller theorem to transform any capacitance connected from " B " to another node into an equivalent capacitance to ground. Answers within $\pm 5 \%$ of the correct answer will receive full credit.
d. [5 pts.] Find the open-circuit time constant for the capacitance between node "OUT" and ground. Use the Miller theorem to transform any capacitance connected from "OUT" to another node into an equivalent capacitance to ground. Answers within $\pm 5 \%$ of the correct answer will receive full credit.
(e) [4 pts] What is the -3 dB frequency $f 1$ of this amplifier in MHz , according to the open-circuit
time constant approximation? Answers within $\pm 5 \%$ of the correct answer will receive full credit. Note that you need not have done (a), (b), (c), and (d) in order to answer this part
with adequate precision.
e. [6 pts] SPICE simulation shows that the next pole is located at $f 2=50 \mathrm{MHz}$. Plot the transfer function Iout /Vs on the graphs below. Note that the units of the gain will be " $20 \log$ Siemans". If you couldn't solve part (d), you can assume that $f 1=2 \mathrm{MHz}$ for this part. Also, if you couldn't solve (f), you can assume that IOUT $/ \mathrm{VS}=$ 0.5 mS for this part.

3. CMOS Digital Gate [20 pts]

[2 pts] What is the logic function implemented by this gate?
(b) [3 pts] Find the widths of NMOS transistors A, B, and C such that the hig-to-low propagation delay tPHL
is the same as the slowest tPHL. Given: $\mathrm{WAn}=\mathrm{WBn}=\mathrm{WCn}$ abd all transistors have the same gate length $\mathrm{L}=2 \mu \mathrm{~m}$
c. [3 pts.] Find the widths of PMOS transistors A, B, and C such that the worst-case low-to-high propagation delay is equal to the high-to-low propagation delay: $\mathrm{tPLH}, \mathrm{wc}=\mathrm{tPHL}$. Given: $\mathrm{WAn}=\mathrm{WBn}=\mathrm{WCn}$ abd all transistors have the same gate length $\mathrm{L}=2 \mu \mathrm{~m}$.
d. [3 pts] Find the numerical value of CDB for this gate in fF .
e. [3 pts.] The aluminum line from the output to the next gate is $500 \mu \mathrm{~m}$ In the length and $2.5 \mu \mathrm{~m}$ wide. Given that the field oxide under the aluminum is 500 nm in thickness, find the numerical value of the wire capacitance CW.
f. [3 pts.] Find the max fanout of this logic gate, assuming that the ouput is connected to one input of each of the CMOS gates and that the transistors in these "load gates" have dimensions: PMOS: (W/L)=20/2 and NMOS: $(\mathrm{W} / \mathrm{L})=10 / 2$. The propagation delay must be less than 15 ns . If you couldn't get parts (d) and (e), you can assume that $\mathrm{CDB}=200 \mathrm{fF}$ and that $\mathrm{CW}=150 \mathrm{fF}$
g. [3 pt] Estimate the minimum supply voltage VDD for which the noise margins of this logic gat will be greater than 500 mV

4. MOSE

Electrostatics [15 pts]

Given: Permittivities $\varepsilon($ silicon $)=11.7 \varepsilon 0($ silicon, $\mathrm{Xd}=-750 \mathrm{~A}=75 \mathrm{~nm})$
$\varepsilon($ oxide $)=3.9 \varepsilon 0$ (silicon dioxide) thickness; $\mathrm{t}=500 \mathrm{~A}=50 \mathrm{~nm}$
$\varepsilon($ silicon nitride $)=7.5 \varepsilon 0$ (silicon nitride) thickness; $\mathrm{t}=50 \mathrm{~nm}$
a. [4pts] Find the numerical value of the electric field $\mathrm{E}(\mathrm{x}=0+)$, which is just inside the silicon.
b. [3 pts] Find the numerical value of the electric field $\mathrm{E}(\mathrm{x}=0-)$, which is just inside the silicon dioxide. If you couldn't solve (a), assume $\mathrm{E}(\mathrm{x}=0+)=50 \mathrm{kV} / \mathrm{cm}$.
c. [4 pts] Find the numerical value of the potential drop across the oxide/nitride sandwich. You can make the
same assumption as in (b) as a default.
(d) [4 pts] Finf the numerical value of the capacitance Cgb for the MOS capacitor biased as shown in the figure.

If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

