EECS 145L Final Examination NAME (please print) $\qquad$
SHOW ALL WORK ON THESE PAGES-If necessary, write on reverse side

## UNIVERSITY OF CALIFORNIA

College of Engineering D epartment of E lectrical E ngineering and Computer Sciences

E ECS 145L: E lectronic Transducer Laboratory
FINALEXAMINATION
D ecember 11, 1993 12:30-3:30 PM
You have three hours to work on the exam, which is to be taken closed book. C alculators are OK, but not needed. Total points $=200$ out of 1000 for the course.
$\qquad$ (30 max) 2 $\qquad$ (45 max) 3 $\qquad$ (50 max)
4 $\qquad$ (30 max) 5 $\qquad$ (45 max)
TOTAL $\qquad$ (200 max)

COURSE GRADE SUMMARY
LAB REPORTS:
$\qquad$
6 $\qquad$
11 $\qquad$
12 ________ $\qquad$
14 $\qquad$ 15 $\qquad$
$\qquad$ 18 $\qquad$
19 $\qquad$
24 $\qquad$

LAB TOTAL = $\qquad$ (1000 max) (top 10 lab report grades included- others in parentheses)

| LAB TOTAL X 5/10 | (500 max) |  |
| :---: | :---: | :---: |
| LAB PARTICIPATION | (100 max) | COURSE LETTER GRADE |
| MID-TERM \#1 | (100 max) |  |
| MID-TERM \#2 | (100 max) |  |
| FINALEXAM | (200 max) |  |
| TOTAL COURSE GRADE | (1000 max) |  |

EECS 145L Final Examination NAME (please print) $\qquad$
SHOW ALL WORK ON THESE PAGES-If necessary, write on reverse side
Problem 1 (30 points)
G ive definitions ( 20 words or less) for the following terms:
1.1 Young's modulus
1.2 Precision of a sensor
1.3 B imetal switch
1.4 Common Mode R ejection $R$ atio (of an instrumentation amplifier)
1.5 T-wave (in the ECG)
1.6 Corner frequency (of a B utterworth filter)

## EECS 145L Final Examination NAME (please print)

$\qquad$
SHOW ALL WORK ON THESE PAGES-If necessary, write on reverse side

## Problem 2 (45 points)

Y ou are designing a system for measuring temperature using a thermistor in a voltage divider. The voltage is to be read by the analog interface of a computer. The A/D input range is -10.24 V to +10.24 V and the output range is 0 to 2047 ( 11 bits).

2.1 (10 points) Sketch a block diagram of your design, showing the resistor divider, the microcomputer with analog input port, and anything else needed. (The best value of the resistor R will be explored below.)

EECS 145L Final Examination NAME (please print) $\qquad$
SHOW ALL WORK ON THESE PAGES-If necessary, write on reverse side
2.2 (5 points) W rite an expression for the output $\mathrm{V}_{0}$ as a function of thermistor resistance $\mathrm{R}_{\mathrm{T}}$.
2.3 (15 points) D etermine the resistor value $R$ that provides the maximum sensitivity dV o/dT at a temperature of $40^{\circ} \mathrm{C}$. A t $40^{\circ} \mathrm{C}$ the thermistor resistance is $\mathrm{R}_{\mathrm{T}}=2.5 \mathrm{k} \Omega$ and dR T/dT $=100 \Omega /{ }^{\circ} \mathrm{C}$.
$H$ int 1: $M$ aximize $d V o / d T=\left(d V_{0} / d R_{T}\right)\left(d R_{T} / d T\right)$
Hint 2: The maximum value of $x /\left(1+x^{2}\right)$ occurs at $x=1$.
2.4 (5 points) $W$ hat is the change in $A / D$ input voltage $\Delta V$ that corresponds to a change of one unit in the A /D output?
2.5 (10 points) At $40^{\circ} \mathrm{C}$, what is the temperature change $\Delta \mathrm{T}$ that corresponds to $\Delta \mathrm{V}$ ?
$\qquad$
SHOW ALL WORK ON THESE PAGES-If necessary, write on reverse side

Problem 3 (50 points)
Y our job is to design an analog altitude control system for an airplane, using negative feedback. This system is supposed to keep the airplane at a nearly constant altitude (height above sea level), despite updrafts, downdrafts, and changes in engine speed.

The vertical acceleration is measured using a piezoelectric transducer connected to a mass. W hen the unit it accelerated, the force causes charges to separate. The sensitivity is $10 \mathrm{pC} / \mathrm{g}$ ( $\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}$, the acceleration of gravity), and the capacitance is 1 nF .

Integrating this signal gives the vertical velocity. Integrating again gives the altitude.

The circuit below performs the first integral of $\mathrm{V}(\mathrm{t})$. A input voltage of 1 V will produce an output $\mathrm{V}_{0}$ that increases at $1 \mathrm{~V} / \mathrm{s}$. A switch can set $\mathrm{V}_{0}$ to zero at any time $\mathrm{t}_{0}$.


Set your circuit gains so that if the system is reset and subjected to a 0.1 g acceleration for 1 s , the output is 50 mV .

The altitude of the airplane is changed by a stepping motor that adjusts the angle of the trailing horizontal tail surfaces (the elevators). If the elevators are angled down, the tail of the airplane is forced up, and the airplane dives. If the elevators are angled up, the tail of the airplane is forced down, and the airplane climbs.
3.1 (20 points) Sketch below your system design. Include the sensors, actuators, and any other necessary electronics (but keep it simple). Include and label all essential components and interconnections.

## EECS 145L Final Examination NAME (please print)

$\qquad$
SHOW ALL WORK ON THESE PAGES-If necessary, write on reverse side
3.2 (15 points) Plot voltage vs. time for the (i) accelerometer output, (ii) the first derivative output, and (iii) the second derivative output for the situation where the system has been reset at $t=0 \mathrm{~s}$, and then subjected to a 0.1 g acceleration for 1 s . Show the time period from $t=0 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$.
3.2 (15 points) Describe how the various components of the system function when the airplane encounters a downdraft.

EECS 145L Final Examination NAME (please print) $\qquad$
SHOW ALL WORK ON THESE PAGES-If necessary, write on reverse side

## Problem 4 (30 points)

D esign a single-stage, inverting, high-pass filter using the op-amp circuit below:


The op-amp specifications are:

- infinite input impedance, no input leakage currents
- above 10 Hz , the open loop gain varies as (frequency) ${ }^{-1}$ and reaches unity gain at $10^{7}$ Hz .

The high pass filter circuit specifications are:

- Low frequency 3 dB point at 100 Hz .
- G ain = 10 in the passband.
4.1 ( 10 points) For $C=1.59 \mu \mathrm{~F}$, what values of $R_{1}, R_{2}$, and $R_{3}$ would you use?

EECS 145L Final Examination NAME (please print) $\qquad$ SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side
4.2 (10 points) Give typical values for the input and output impedance of the filter circuit at 10 kHz .
4.3 (10 points) For your design, sketch the B ode plot below:


## EECS 145L Final Examination NAME (please print)

$\qquad$
SHOW ALL WORK ON THESE PAGES-If necessary, write on reverse side

Problem 5 (45 points)
For the following physical quantities, describe (1) typically what causes them, (2) their nature (the qualities that define them, typical magnitude, etc.), (3) and a means for sensing them and producing a useful $\approx 5 \mathrm{~V}$ electrical signal.
5.1 (15 points) The electrocardiogram (E C G )
$\qquad$
SHOW ALL WORK ON THESE PAGES-If necessary, write on reverse side
5.2 (15 points) V isible light

## 5.3 (15 points) Strain

EECS 145L Final Examination NAME (please print) $\qquad$
SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side
Equations, some of which you may need:

$$
\begin{aligned}
& \frac{V_{1}}{V_{1}+V_{2}}=\frac{R_{1}}{R_{1}+R_{2}} \quad R(T)=R\left(T_{0}\right) \exp \left[\beta\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right] \quad V_{r m s}=\sqrt{B\left[\left(D_{1} G\right)^{2}+\left(D_{0}\right)^{2}\right]} \\
& \mathrm{V}(\mathrm{t})=\mathrm{V}_{0} \sin (\omega \mathrm{t}) \quad \omega=2 \pi \mathrm{f} \quad \mathrm{~V}_{0}=\mathrm{A}\left(\mathrm{~V}_{+}-\mathrm{V}_{-}\right) \\
& |G|=\frac{1}{\sqrt{1+\left(f / f_{c}\right)^{2 n}}} \\
& \tan \left(\frac{\phi}{n}\right)=\frac{f}{f_{c}} \\
& N(x)=N(0) e^{-x \mu} \\
& x=e^{-\alpha t}[A \cos (\omega t)+B \sin (\omega t)]=R e^{-\alpha t} \cos (\omega t+\delta) \quad V=q / C \\
& \left.v=v_{0}+\text { at } x=x_{0}+v_{0} t+0.5 a t^{2} \quad \text { (constant } a\right) \quad g=10 \mathrm{~m} \mathrm{~s}^{-2} \\
& T=T_{2}-\left(T_{2}-T_{1}\right) \mathrm{e}^{-\mathrm{t} / \tau} \\
& \mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{-\mathrm{kLC}} \quad \Delta \mathrm{x}=\frac{\Delta \mathrm{V}}{\mathrm{dV} / \mathrm{dx}} \\
& I_{r m s}=\sqrt{2 q I\left(F_{2}-F_{1}\right)} \quad q=1.60 \times 10^{-19} \text { C oulombs } \\
& \mathrm{V}_{\mathrm{rms}}=\sqrt{4 \mathrm{kTR}\left(\mathrm{~F}_{2}-\mathrm{F}_{1}\right)} \quad \mathrm{k}=1.38 \times 10^{-23} \mathrm{~V} \text { olt }^{2} \mathrm{sec} \text { ohm-1 }{ }^{\circ} \mathrm{K}-1 \\
& R_{T}=R_{3} \frac{V_{b} R_{1}-V_{0}\left(R_{1}+R_{2}\right)}{V_{b} R_{2}+V_{0}\left(R_{1}+R_{2}\right)} \\
& V_{0}=G_{ \pm}\left(V_{+}-V_{-}\right)+G_{C}\left(V_{+}+V_{-}\right) 2 \\
& f_{c}=\frac{1}{2 \pi R C} \\
& " C M R R "=\frac{G_{ \pm}}{G_{C}} \quad " C M R "=20 \log _{10}\left(\frac{G_{ \pm}}{G_{C}}\right) \\
& \mathrm{R}=\rho \mathrm{A} / \mathrm{L} \quad \frac{\Delta \mathrm{R}}{\mathrm{R}}=\mathrm{G} \frac{\Delta \mathrm{~L}}{\mathrm{~L}} \quad \mathrm{~V}_{0}=\mathrm{V}_{\mathrm{b}} \mathrm{G}\left(\frac{\Delta \mathrm{~L}}{\mathrm{~L}}\right) \\
& \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}=\frac{\mathrm{kT}}{\mathrm{q}} \ln \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right) \quad \mathrm{k} / \mathrm{q}=86.17 \mu \mathrm{~V} / \mathrm{K} \\
& \mathrm{P}_{\mathrm{R}}=\sigma \mathrm{AT}{ }^{4} \quad \sigma=5.6696 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{4} \\
& \mathrm{E}=\mathrm{hc} / \lambda \quad \mathrm{hc}=1240 \mathrm{eV} \cdot \mathrm{~nm} \\
& \lambda_{\text {max }}=\left(2.8978 \times 10^{6} \mathrm{~nm} \text { K }\right) / \Gamma \\
& \eta=\frac{T_{n+2}-T_{n+1}}{T_{n+1}-T_{n}} \\
& T_{\text {equ }}=T_{n+1}+\frac{T_{n+2}-T_{n+1}}{1-\eta}
\end{aligned}
$$

$\qquad$
SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

$$
\begin{array}{ll}
Q=\pi l+I^{2} R / 2+K_{p}\left(T_{s}-T_{0}\right)+K_{a}\left(T_{a}-T_{0}\right) & T_{\text {equ }}=\frac{\pi l+1^{2} R / 2+K_{p} T_{s}+K_{a} T_{a}}{K_{p}+K_{a}} \\
\mu \approx \bar{a}=\frac{1}{m} \sum_{i=1}^{m} a_{i} \quad \sigma_{a}^{2}=\frac{1}{m-1} \sum_{i=1}^{m}\left(a_{i}-\bar{a}\right)^{2} & \sigma_{\bar{a}}=\frac{\sigma_{a}}{\sqrt{m}} \\
\sigma_{f}=\sqrt{\left(\frac{\partial f}{\partial a_{1}}\right)^{2} \sigma_{a \mathrm{a} 1}^{2}+\left(\frac{\partial f}{\partial a_{2}}\right)^{2} \sigma_{a 2}^{2}+\cdots+\left(\frac{\partial f}{\partial a_{n}}\right)^{2} \sigma_{a n}^{2}}
\end{array}
$$



## HAPPY HOLIDAYS!!



