EECS 145L Final Examination NAME (please print) ______ SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 145L: Electronic Transducer Laboratory

FINAL EXAMINATION

December 17, 1992 5:00 - 8:00 PM

You have three hours to work on the exam, which is to be taken closed book. Calculators are OK, but not needed. Total points = 200 out of 1000 for the course.

COURSE GRADE SUMMARY

 LAB REPORTS:

 4 _______5 _____6 _____7 ____11 _____

 12 ______13 _____14 _____15 _____16 _____

 17 ______18 _____19 _____

LAB TOTAL =_____ (1000 max) (top 10 lab report grades included- others in parentheses)

LAB TOTAL X 6/10	 (600 max)	
LAB PARTICIPATION	 (100 max)	COURSE LETTER GRADE
MID-TERM	 (100 max)	
FINAL EXAM	 (200 max)	
TOTAL COURSE GRADE	 (1000 max)	

EECS 145L Final ExaminationNAME (please print)SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

Problem 1 (24 points)

Give definitions (20 words or less) for the following terms:

1.1 Sensitivity of a sensor

1.2 Actuator

1.3 Strain gauge

1.4 Operational amplifier (ideal)

1.5 Johnson Noise

1.6 Photoconductive mode (of a photodiode)

SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

Problem 2 (32 points)

Describe the components and operation of the following sensors, actuators, and circuits:

2.1 Isolation amplifier (electromagnetic or optical)

2.2 Thermistor

2.3 Thermocouple

2.4 Digital linear position encoder

EECS 145L Final Examination NAME (please print) SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

Problem 3 (30 points)

You work as a design engineer for Thermal Manufacturing, Inc. Frequently, prospective customers ask your professional advice whether to use a thermistor or a thermocouple in various situations. For each application below, mark an X to indicate which device is the better choice.

	Thermistor	Thermocouple
Measuring the temperature in a glass furnace		
Measuring small variations in body temperature over a day		
Measuring the temperature difference between sunlit and shaded surfaces on the moon over periods of several years		
A case where linear sensor output (volts vs tempera- ture) is required over a large temperature range		
Accurate temperature measurement where the thermal conductivity of the surrounding medium is frequently changing		
Sensor for a temperature control system in an elec- trically noisy environment		

SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

Problem 4 (34 points)

You are planning to detect light using a photodiode and an op-amp in the circuit below:

The specifications for the op-amp are :

- input leakage current difference = 0.1 nA
- input offset voltage = 1 mV
- rms input noise = $10 \text{ nV/Hz}^{-1/2}$ at 90 kHz; 20 nV/Hz^{-1/2} at 9 MHz
- rms output noise = $100 \text{ nV/Hz}^{-1/2}$ at 90 kHz; 200 nV/Hz^{-1/2} at 9 MHz
- $R_{in} = 10^9$
- Unity gain bandwidth = 9 MHz

The specifications for the photodiode are :

• dark current @ 5 V reverse bias = 0.9 nA

4.1 (10 points) Explain how the circuit converts the current I_D into the output voltage V_0 and give a formula for V_0 as a function of I_D .

EECS 145L Final ExaminationNAME (please print)SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

4.2 (10 points) What happens if \mathbf{R}_1 is taken out of the circuit? Justify your answer.

4.3 (14 points) What is the amplifier output V_0 (compute both the average value and rms noise) when no light reaches the photodiode? Show work.

SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

Problem 5 (48 points)

You have just been hired by an engineering firm that provides instrumentation to large industrial corporations. Your first problem is designing a system for measuring the liquid level in a large tank.

- The liquid level is to be sensed electronically and the electrical signal is to be connected to the analog input of a microcomputer for display and storage
- the tank is 10 meters in diameter and 10 meters high.
- The liquid absorbs green light with an absorption of 10% per meter (I(L) = I(0)e^{-kCL}, kC = 0.1 m⁻¹)
- The liquid is slightly conductive (A column of liquid with area A and length L has resistance R = A/L)
- The liquid is non-flammable.
- The liquid level is to be measured to an accuracy of 0.1 meter.

5.1 (8 points) Describe in about 50 words and/or a simple sketch how you would measure the liquid level using light sensors.

5.2 (8 points) Describe in about 50 words and/or a simple sketch how you would measure the liquid level using strain gauges.

SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

5.3 (8 points) Describe in about 50 words and/or a simple sketch how you would measure the liquid level using a digital angle sensor.

5.4 (8 points) Describe in about 50 words and/or a simple sketch how you would measure the liquid level using ideal electrodes. (Hint: ideal electrodes transform ionic conductivity in a solution into simple electrical conductivity).

SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

5.5 (8 points) Describe in about 50 words and/or a simple sketch how you would measure the liquid level using thermistors.

5.6 (8 points) Describe in about 50 words and/or a simple sketch how you would measure the liquid level using sound (speaker and microphone).

SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

Problem 6 (32 points)

Design a simple *analog* temperature control system using the following components

- a thermistor
- a thermoelectric heat pump and heat sink (one surface heats or cools, depending on input voltage polarity; the other surface is kept at room temperature by the heat sink)
- a power amplifier (single input- single output, requires ±10 volt supply)
- a ±10-volt power supply
- a steel box insulated with glass fibers
- any components or circuits used in the 145L lab

Note: Do not use a computer or analog filtering

Your system should do the following:

- keep the inside of the box at a chosen temperature
- allow the chosen temperature to be varied

6.1 (12 points) Sketch below a block diagram for the system.

- Include and label all essential components and include all interconnections.
- Show typical voltage and current levels at all important points.

SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

6.2 (12 points) Do part 5.1 again, replacing the thermoelectric heat pump with a high-wattage, high-temperature resistor

6.3 (8 points) List the relative advantages and disadvantages of the two systems described above

SHOW ALL WORK ON THESE PAGES- If necessary, write on reverse side

Equations, some of which you may need:

